Skip to main content

Advertisement

Log in

Impact of Nanomaterials on Health and Environment

  • Review Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Humans have been exposed to airborne nanosized materials (<100 nm) throughout the millennia, but the extent of exposure has increased significantly since the industrial revolution with special reference to the combustion processes. The advent of nanotechnology in the last 2 decades has further increased the risk of exposure of nanomaterials through one of the following routes; inhalation, ingestion, dermal and drug delivery using engineered nanomaterials. Conversion from bulk state to nanosize imparts new properties to the nanomaterials in regard to mechanical, electrical, optical, catalytic activity, and lastly, but not the least, the biological activity. Toxicological effects of nanomaterials need to be examined during a product’s lifecycle including manufacture, use and disposal. The health hazards and safety considerations of nanomaterials need further attention and basic interdisciplinary research work is called for involving materials scientists, toxicologists, medical practitioners and environmental engineers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

125I:

Iodine-125

AB:

Alamar Blue

Ag:

Silver

Al2O3 :

Aluminum oxide

ATP:

Adenosine triphosphate

BAL:

Bronchoalveolar Lavage

C60 :

Fullerene

CB:

Carbon black

CdTe:

Cadmium telluride

CeO2 :

Cerium dioxide

CSi-PEO:

Polyethylene oxide modified carbosilane

CTAB:

Cetyl trimethyl ammonium bromide

Cu:

Copper

CuO:

Copper oxide

CVD:

Chemical vapour deposition

DAB:

Diaminobutane

DAE:

Diaminoethane

DNA:

Deoxyribonucleic acid

DPPC:

Dipalmitoyl phosphatidylcholine

ELISA:

Enzyme linked immunosorbent assay

E-waste:

Electronic waste

FDA:

Federal Drug Administration, USA

Fe2O3 :

Iron oxide

FETAX:

Frog embryo teratogenesis assay xenopus

HAP:

Hydroxy apatite

HMM:

Human monocyte macrophage

LDH:

Lactate dehydogenase

MgO:

Magnesium oxide

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide

MWCNT:

Multi wall carbon nanotube

NBT:

Nitro blue tetrazolium

NHBE:

Normal human primary bronchial epithelial cells

Ni:

Nickel

NMR:

Nuclear magnetic resonance

NP:

Nanoparticle

NRR:

Neutral red retention

PAMAM:

Polyamidoamine

Pd:

Palladium

PEG:

Poly(ethylene glycol)

Pt:

Platinum

QD:

Quantum dot

ROS:

Reactive oxygen species

RT-PCR:

Real time polymerase chain reaction

SEM:

Scanning electron microscope

Si:

Silicon

SiO2 :

Silicon dioxide

SPION:

Super paramagnetic iron oxide nanoparticle

SVL:

Snout vent length

SWCNT:

Single wall carbon nanotube

TBL:

Total body length

TEM:

Transmission electron microscope

TiO2 :

Titanium dioxide

TPL:

Two-photon-induced luminescence

UV:

Ultra Violet

W:

Tungsten

ZnO:

Zinc oxide

References

  1. Global market for nanotechnology products worth $26.7 billion by 2015. http://bccresearch.wordpress.com/2010/08/09/global-market-for-nanotechnology-products-worth-26-7-billion-by-2015/ Accessed 16 Dec 2011

  2. Alan, R.: Real life applications of nanotechnology in electronics. http://www.onboard-technology.com/pdf_ottobre2005/100507.pdf (2011). Accessed 16 Dec 2011

  3. Silver: A natural antimicrobial. http://www.smartsilver.com/silver. Accessed 16 Dec 2011

  4. Hillie T., Hlophe M.: Nanotechnology and the challenge of clean water. Nat. Nanotechnol. 2, 663–664 (2007)

    Article  Google Scholar 

  5. 15 Astonishing Real-Life Applications of Nanotechnology: Artificial intelligence and beyond. http://weburbanist.com/2008/08/17/15-astonishing-real-life-applications-of-nanotechnology/ (2011) Accessed 16 Dec 2011

  6. Ineke, M.: Biomedical applications of nanotechnology. http://www.aip.org/tip/INPHFA/vol-8/iss-3/p15.pdf (2011). Accessed 16 Dec 2011

  7. Antimicrobial Nanotechnology Used by NFL Teams and Promoted to Professional Football Athletic Trainers, http://www.azonano.com/news.aspx?newsID=4363 Accessed 16 December 2011

  8. Crooks R.: Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. Acc. Chem. Res. 34, 181–190 (2001)

    Article  Google Scholar 

  9. Zhao J., Pinchuk A.O., McMahon J.M., Li S., Ausman L.K., Atkinson A.L., Schatz G.C.: Methods for describing the electromagnetic properties of silver and gold nanoparticles, Acc. Chem. Res. 41, 1710–1720 (2008)

    Article  Google Scholar 

  10. Nair L.S., Laurencin C.T.: Silver nanoparticles: synthesis and therapeutic applications. J. Biomed. Nanotechnol. 3, 301–316 (2007)

    Article  Google Scholar 

  11. Kandavelu V., Kastien H., Ravindranathan-Thampi K.: Photocatalytic degradation of isothiazolin-3-ones in water and emulsion of paints containing nanocrystalline TiO2 and ZnO catalysts. Appl. Catal. B: Environ. 48, 101–111 (2004)

    Article  Google Scholar 

  12. Schmid K., Riediker M.: Use of nanoparticles in Swiss industry: a targeted survey. Environ. Sci. Technol. 42, 2253–2260 (2008)

    Article  Google Scholar 

  13. Chang S.Y., Liu L., Asher S.A.: Preparation and properties of tailored morphology, monodisperse colloidal silica-cadmium sulfide nanocomposites. J. Am. Chem. Soc. 116, 6739–6744 (1994)

    Article  Google Scholar 

  14. Li Y.H., Wang S., Wei J., Zhang X., Xu C., Luan Z., Wu D., Wei B.: Lead adsorption on carbon nanotubes. Chem. Phys. Lett. 357, 263–266 (2002)

    Article  Google Scholar 

  15. Cai Y.Q., Jiang G.B., Liu J.F., Zhou Q.X.: Multiwalled carbon nanotubes as a solid-phase extraction adsorbent for the determination of bisphenol A, 4-nonylphenol, and 4-tert-octylphenol. Anal. Chem. 75, 2517–2521 (2003)

    Article  Google Scholar 

  16. Khlobystov A.N.: Carbon nanotubes: from nano test tube to nano-reactor. ACS Nano. 5, 9306–9312 (2011)

    Article  Google Scholar 

  17. Peng X.J., Luan Z.K., Zing J., Di Z.H., Li Y.H., Tian B.H.: Ceria nanoparticles supported on carbon nanotubes for the removal of arsenate from water. Mater. Lett. 59, 399–403 (2005)

    Article  Google Scholar 

  18. Matijevic E., Hsu W.P.: Preparation and properties of monodispersed colloidal particles of lanthanide compounds: I. Gadolinium, europium, terbium, samarium, and cerium (III). J. Colloid. Interface Sci. 118, 506–523 (1987)

    Article  Google Scholar 

  19. Zhang F., Chan S.-W., Spanier J.E., Apak E., Jin Q., Robinson R.D., Herman I.P.: Cerium oxide nanoparticles: size-selective formation and structure analysis. Appl. Phys. Lett. 80, 127–129 (2002)

    Article  Google Scholar 

  20. Drobot D.V., Chub A.V., Voronov V.V., Fedorov P.P., Ivanov V.K., Polezhaeva O.S.: Preparation of ceria nanoparticles. Inorg. Mater. 44, 853–855 (2008)

    Article  Google Scholar 

  21. Ohde M., Ohde H., Wai C.M.: Recycling nanoparticles stabilized in water-in-CO2 microemulsions for catalytic hydrogenations. Langmuir. 21, 1738–1744 (2005)

    Article  Google Scholar 

  22. Sun S., Zhang G., Geng D., Chen Y., Li R., Cai M., Sun X.: A highly durable platinum nanocatalyst for proton exchange membrane fuel cells: multiarmed starlike nanowire single crystal. Angew. Chem. 123, 442–446 (2011)

    Article  Google Scholar 

  23. Lloyd S., Lave L., Matthews H.S.: Life cycle benefits of using nanotechnology to stabilize platinum-group metal particles in automotive catalysts. Environ. Sci. Technol. 39, 1384–1392 (2005)

    Article  Google Scholar 

  24. O’Farrell N., Houlton A., Horrocks B.R.: Silicon nanoparticles: applications in cell biology and medicine. Int. J. Nanomedicine. 1, 451–472 (2006)

    Article  Google Scholar 

  25. Chen H.-S., Chiu J.-J., Pern T.-P.: On the Photoluminescence of Si Nanoparticles. Mater. Phys. Mech. 4, 62–66 (2001)

    Google Scholar 

  26. Scriba M.R., Arendse C., Härting M., Britton D.T.: Hot-wire synthesis of Si nanoparticles. Thin Solid Films. 516, 844–846 (2008)

    Article  Google Scholar 

  27. Chang H., Su H.-T.: Synthesis and magnetic properties of Ni nanoparticles. Rev. Adv. Mater. Sci. 18, 667–675 (2008)

    Google Scholar 

  28. Yan J.-M., Zhang X.-B., Han S., Shioyama H., Xu Q.: Synthesis of longtime water/air-stable ni nanoparticles and their high catalytic activity for hydrolysis of ammonia-borane for hydrogen generation. Inorg. Chem. 48, 7389–7393 (2009)

    Article  Google Scholar 

  29. Huang H., Yang S., Gu G.: Preparation of Carbon-Coated Cobalt Nanocrystals in a New Gas Blow Arc Reactor and Their Characterization. J. Phys. Chem. B. 102, 3420–3424 (1998)

    Article  Google Scholar 

  30. Wang H., Kou X., Zhang J., Li J.: Large scale synthesis and characterization of Ni nanoparticles by solution reduction method. Bull. Mater. Sci. 31, 97–100 (2008)

    Article  Google Scholar 

  31. Trewyn B.G., Nieweg J.A., Zhao Y., Lin V.S.-Y: Biocompatible mesoporous silica nanoparticles with different morphologies for animal cell membrane penetration. Chem. Eng. J. 137, 23–29 (2007)

    Article  Google Scholar 

  32. Trewyn B.G., Slowing I.I., Giri S., Chen H.-T., Lin V.S.-Y.: Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol–gel process and applications in controlled release. Acc. Chem. Res. 40, 846–853 (2007)

    Article  Google Scholar 

  33. Nakamura M., Shono M., Ishimura K.: Synthesis, characterization, and biological applications of multifluorescent silica nanoparticles. Anal. Chem. 79, 6507–6514 (2007)

    Article  Google Scholar 

  34. Tartaj P., delPuerto Morales M., Veintemillas-Verdaguer S., Gonzalez-Carreno T., Sern C.J.: The preparation of magnetic nanoparticles for applications in biomedicine. J. Phys. D: Appl. Phys. 36, R182–R19 (2003)

    Article  Google Scholar 

  35. Zheng Y., Cheng Y., Wang Y., Bao F., Zhou L., Wei X., Zhang Y., Zheng Q.: Quasicubic r-Fe2O3 nanoparticles with excellent catalytic performance. J. Phys. Chem. B. 110, 3093–3097 (2006)

    Article  Google Scholar 

  36. Sahoo P.K., Kalyan Kamal S.S., Premkumar M., Jagadeesh Kumar T., Sreedhar B., Singh A.K., Srivastava S.K., Chandra Sekhar K.: Synthesis of tungsten nanoparticles by solvothermal decomposition of tungsten hexacarbonyl. Int. J. Refractory Metals Hard Mater. 27, 784–791 (2009)

    Article  Google Scholar 

  37. Yadav, T.: Tungsten comprising nanomaterials and related nanotechnology. US Patent: 7708974 (2010)

  38. Kim J., Kang S.W., Mun S.H., Kang Y.S.: Facile synthesis of copper nanoparticles by ionic liquids and its application to facilitated olefin transport membrane. Indus Eng. Chem. Res. 48, 7437–7441 (2009)

    Article  Google Scholar 

  39. Prabhu B.M., Ali S.F., Murdock R.C., Hussain S.M., Srivatsan M.: Copper nanoparticles exert size and concentration dependent toxicity on somatosensory neurons of rat. Nanotoxicology 4, 150–160 (2010)

    Article  Google Scholar 

  40. Xing Y., Liu Z., Suib S.L.: Inorganic synthesis for the stabilization of nanoparticles: application to Cu/Al2O3 nanocomposite materials. Chem. Mater. 19, 4820–4826 (2007)

    Article  Google Scholar 

  41. Epple M., Ganesan K., Heumann R., Klesing J., Kovtun A., Neumann S., Sokolova V.: Application of calcium phosphate nanoparticles in biomedicine. J. Mater. Chem. 20, 18–22 (2010)

    Article  Google Scholar 

  42. Thomas S.P., Thomas S., Bandyopadhyay S.: Polystyrene calcium phosphate nanocomposites: preparation, morphology and mechanical behaviour. J. Phys. Chem. C. 113, 97–104 (2009)

    Article  Google Scholar 

  43. Jackson C.L., Chanzy H.D., Booy F.P., Drake B.J., Tomalia D.A., Bauer B.J., Amis E.J.: Visualization of dendrimer molecules by transmission electron microscopy (TEM): staining methods and cryo-TEM of vitrified solutions. Macromolecules 31, 6259–6265 (1998)

    Article  Google Scholar 

  44. Kunzmann A., Andersson B., Thurnherr T., Krug H., Scheynius A., Fadeel B.: Toxicology of engineered nanomaterials: focus on biocompatibility, biodistribution and biodegradation. Biochimica et Biophysica Acta. 1810, 361–373 (2011)

    Article  Google Scholar 

  45. Sauer U.G., Kneuer C., Tentschert J., Wchter T., Schroeder M., Butzke D., Luch A., Liebsch M., Grune B., Gtz M.E.: A knowledge-based search engine to navigate the information thicket of nanotoxicology. Regul. Toxicol. Pharmacol. 59, 47–52 (2011)

    Article  Google Scholar 

  46. Nel A., Xia T., Mädler L., Li N.: Toxic potential of materials at the nanolevel. Science. 311(5761), 622–627 (2006)

    Article  Google Scholar 

  47. Herzog E., Casey A., Lyng F.M., Chambers G., Byrne H.J., Davoren M.: A new approach to the toxicity testing of carbon-based nanomaterials—The clonogenic assay. Toxicol. Lett. 174, 49–60 (2007)

    Article  Google Scholar 

  48. Kirchner C., Liedl T., Kudera S., Pellegrino T., Javier A.M., Gaub H.E., Stolzle S., Fertig N., Parak W.J.: Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett. 5, 331–338 (2005)

    Article  Google Scholar 

  49. Fraser T.W.K., Reinardy H.C., Shaw B.J., Henry T.B., Handy R.D.: Dietary toxicity of single-walled carbon nanotubes and fullerenes (C60) in rainbow trout (Oncorhynchus mykiss). Nanotoxicology. 5, 98–108 (2010)

    Article  Google Scholar 

  50. Gonzalez L., Lison D., Kirsch-Volders M.: Genotoxicity of engineered nanomaterials: a critical review. Nanotoxicology. 2, 252–273 (2008)

    Article  Google Scholar 

  51. Shaw B.J., Handy R.D.: Physiological effects of nanoparticles on fish: a comparison of nanometals versus metal ions. Environ. Int. 37, 1083–1097 (2011)

    Article  Google Scholar 

  52. Gogotsi Y.: How safe are nanotubes and other nanofilaments? Mat. Res. Innovat. 7, 192–194 (2003)

    Article  Google Scholar 

  53. Wiesner M.R., Lowry G.V., Alvarez P., Dionysiou D., Biswas P.: Assessing the risks of manufactured nanomaterials. Environ. Sci. Technol. 40, 4336–4345 (2006)

    Article  Google Scholar 

  54. Oberdorster E.: Manufactured nanomaterials (Fullerenes, C-60) induce oxidative stress in the brain of juvenile largemouth bass. Environ. Health Perspec. 112, 1058–1062 (2004)

    Article  Google Scholar 

  55. The Royal Society and the Royal Academy of Engineering Nanoscience and Nanotechnologies: Opportunities and Uncertainties. The Royal Society, London (2004)

  56. Wijnhoven S.W.P., Peijnenburg W.J.G.M., Herberts C.A., Hagens W.I., Oomen A.G., Heugens E.H.W., Roszek B., Bisschops J., Gosens I., van de Meent D., Dekkers S., Jong W.H., van Zijverden M., Sips A.J.A.M., Geertsma R.E.: Nano-silver a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology. 3, 109–138 (2009)

    Article  Google Scholar 

  57. Marquis B.J., Love S.A., Braun K.L., Haynes C.L.: Analytical methods to assess nanoparticle toxicity. Analyst. 134, 425–439 (2009)

    Article  Google Scholar 

  58. Oberdorster G., Oberdorster E., Oberdorster J.: Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspec. 113, 823–839 (2005)

    Article  Google Scholar 

  59. Chow E.K.-H., Pierstorff E., Cheng G., Ho D.: Copolymeric nanofilm platform for controlled and localized therapeutic delivery. ACS Nano. 2, 33–40 (2008)

    Article  Google Scholar 

  60. Dhawan A., Sharma V.: Toxicity assessment of nanomaterials: methods and challenges. Anal. Bioanal. Chem. 398, 589–605 (2010)

    Article  Google Scholar 

  61. Mraz S.J.: Nanowaste: the next big threat?. Machine Design. 77, 46–53 (2005)

    Google Scholar 

  62. Oberdrster G., Maynard A., Donaldson K., Castranova V., Fitzpatrick J., Ausman K., Carter J., Karn B., Kreyling W., Lai D., Olin S., Monteiro-Riviere N., Warheit D., Yang H.: Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Particle Fibre Toxicol. 2, 8–43 (2005)

    Article  Google Scholar 

  63. Monteiro-Riviere N.A., Inman A.O., Zhan L.W.: Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line. Toxicol. Appl. Pharmacol. 234, 222–235 (2009)

    Article  Google Scholar 

  64. Liu W.T.: Nanoparticles and their biological and environmental applications. J. Biosci. Bioeng. 102, 1–7 (2006)

    Article  Google Scholar 

  65. Kostarelos K., Lacerda L., Pastorin G., Wu W., Wieckowski S., Luangsivilay J., Godefroy S., Pantarotto D., Briand J.P., Muller S., Prato M., Bianco A.: Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat. Nanotechnol. 2, 108–113 (2007)

    Article  Google Scholar 

  66. Porter A.E., Gass M., Muller K., Skepper J.N., Midgley P.A., Welland M.: Direct imaging of single-walled carbon nanotubes in cells. Nat. Nanotechnol. 2, 713–717 (2007)

    Article  Google Scholar 

  67. Oberdrster G., Stone V., Donaldson K.: Toxicology of nanoparticles: a historical perspective. Nanotoxicology. 1, 2–25 (2007)

    Article  Google Scholar 

  68. Unfried K., Albrecht C., Klotz L.O., Von Mikecz A., Grether-Beck S., Schins R.P.F.: Cellular responses to nanoparticles: target structures and mechanisms. Nanotoxicology. 1, 52–71 (2007)

    Article  Google Scholar 

  69. Buzea C., Pacheco I., Robbie K.: Nanomaterials and nanoparticles: sources and toxicity. Biointerphases. 2, MR17–MR72 (2007)

    Article  Google Scholar 

  70. Lazar, M.; Rychly, J.; Klimo, V.; Pelikan, P.; Valko, L.: Free radicals in chemistry and biology. CRC press, Florida (1989)

  71. Symons, M.C.R.; Gutteridge, J.M.C: Free Radicals and Iron: Chemistry, Biology and Medicine. Oxford University Press, New York (1998)

  72. Navarro E., Baun A., Behra R., Hartmann N.B., Filser J., Miao A-J., Quigg A., Santschi P.H., Sigg L.: Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants and fungi. Ecotoxicology. 17, 372–387 (2008)

    Article  Google Scholar 

  73. Lin D., Xing B.: Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ. Pollution. 150, 243–250 (2007)

    Article  Google Scholar 

  74. Doshi R., Braida W., Christodoulatos C., Wazne M., O’Connor G.: Nanoaluminum: transport through sand columns and environmental effects on plants and soil communities. Environ. Res. 106, 296–303 (2008)

    Article  Google Scholar 

  75. Lin D., Xing B.: Roof uptake and phytotoxicity of ZnO nanoparticles. Environ. Sci. Technol. 42, 5580–5585 (2008)

    Article  Google Scholar 

  76. Baun A., Hartmann N.B., Grieger K., Kusk K.O.: Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology. 17, 387–396 (2008)

    Article  Google Scholar 

  77. Handy R.D., Henry T.B., Scown T.M., Johnston B.D., Tyler C.R.: Manufactured nanoparticles: their uptake and effects on fish: a mechanistic analysis. Ecotoxicology. 17, 396–410 (2008)

    Article  Google Scholar 

  78. Long T.C., Saleh N., Tilton R.D., Lowry G.V., Veronesi B.: Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2) implications for nanoparticle neurotoxicity. Environ. Sci. Technol. 40, 4346–4352 (2006)

    Article  Google Scholar 

  79. Long T.C., Tajuba J., Sama P., Saleh N., Swartz C., Parker J., Hester S., Lowry G.V., Veronesi B.: Nanosize titanium dioxide stimulates reactive oxygen species in brain microglia and damages neurons in vitro. Environ. Health Perspec. 115, 1631–1637 (2007)

    Article  Google Scholar 

  80. Vevers W.F., Jha A.N.: Genotoxic and cytotoxic potential of titanium dioxide (TiO2) nanoparticles on fish cells in vitro. Ecotoxicology. 17, 410–420 (2008)

    Article  Google Scholar 

  81. Lewinski N., Colvin V., Drezek R.: Cytotoxicity of nanoparticles. Small. 4, 26–49 (2008)

    Article  Google Scholar 

  82. McAuliffe M.E., Perry M.J.: Are nanoparticles potential male reproductive toxicants? A literature review. Nanotoxicology. 1, 204–210 (2007)

    Article  Google Scholar 

  83. Nowack B., Bucheli T.D.: Occurrence, behavior and effects of nanoparticles in the environment. Environ. Pollution. 150, 5–22 (2007)

    Article  Google Scholar 

  84. Vaaraslahti K., Virtanen A., Ristimaki J., Keskinen J.: Nucleation mode formation in heavy-duty diesel exhaust with and without a particulate filter. Environ. Sci. Technol. 38, 4884–4890 (2004)

    Article  Google Scholar 

  85. Stafford N.: Catalytic converters go nano. Chem. World. 4, 16 (2007)

    Google Scholar 

  86. Nischwitz V., Michalke B., Kettrup A.: Speciation of Pt(II) and Pt(IV) in spiked extracts from road dust using on-line liquid chromatography-inductively coupled plasma mass spectrometry. J. Chromatography A. 1016, 223–234 (2003)

    Article  Google Scholar 

  87. Artelt S., Creutzenberg O., Kock H., Levsen K., Nachtigall D., Heinrich U., Rühle T., Schlgl R.: Bioavailability of fine dispersed platinum as emitted from automotive catalytic converters: a model study. Sci. Total Environ. 228, 219–242 (1999)

    Article  Google Scholar 

  88. Ek K.H., Rauch S., Morrison G.M., Lindberg P.: Platinum group elements in raptor eggs, faeces, blood, liver and kidney. Sci. Total Environ. 334, 149–159 (2004)

    Article  Google Scholar 

  89. Hannah W., Thompson P.B.: Nanotechnology, risk and the environment: a review. J. Environ. Monitor. 10, 291–300 (2008)

    Article  Google Scholar 

  90. Nohynek G.J., Dufour E.K., Roberts M.S.: Nanotechnology, cosmetics and the skin: is there a health risk? Skin Pharmacol. Physiol. 21, 136–149 (2008)

    Google Scholar 

  91. Nohynek G.J., Lademan J., Ribau C., Robert M.S.: Grey goo on the skin? nanotechnology, cosmetic and sunscreen safety. Crit. Rev. Toxicol. 37, 251–277 (2007)

    Article  Google Scholar 

  92. Blaser S.A., Scheringer M., MacLeod M., Hungerbühler K.: Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano functionalized plastics and textiles. Sci. Total Environ. 390, 396–409 (2008)

    Article  Google Scholar 

  93. Wu P.G., Zhu J.H., Xu Z.H.: Template-assisted synthesis of mesoporous magnetic nanocomposite particles. Adv. Funct. Mater. 14, 345–351 (2004)

    Article  Google Scholar 

  94. Botta C., Labille J., Auffan M., Borschneck D., Miche H., Cabié M., Masion A., Rose J., Bottero J.-Y.: Environ. Pollution. 159, 1543–1550 (2011)

    Article  Google Scholar 

  95. Hutchison J.E.: Greener nanoscience: a proactive approach to advancing applications and reducing implications of nanotechnology. ACS Nano. 2, 395–402 (2008)

    Article  Google Scholar 

  96. Handy R.D., Owen R., Valsami-Jones E.: The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology. 17, 315–326 (2008)

    Article  Google Scholar 

  97. Hasselv M., Readman J.W., Rainville J.F., Tiede K.: Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles. Ecotoxicology. 17, 344–362 (2008)

    Article  Google Scholar 

  98. Chiaretti, M.; Mazzanti, G.; Bosco, S.; Bellocci, S.; Cucina, A.; Le Foche, F.; Carru, G.A.; Mastrangelo, S.; Di Sotto, A.; Masciangelo, R.; Chiaretti, A.M.; Balasubramanian, C.; De Bellis, G.; Micciulla, F.; Porta, N.; Deriu, G.; Tiberia A.: Carbon nanotubes toxicology and effects on metabolism and immunological modification in vitro and in vivo. J. Phys. Condens. Matter. 20, 474203 (10 pp) (2008)

  99. Monteiro-Riviere N.A., Nemanich R.J., Inman A.O., Wang Y.Y., Riviere J.E.: Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicol. Lett. 155, 377–384 (2005)

    Article  Google Scholar 

  100. Kang S., Mauter M.S., Elimelech M.: Microbial cytotoxicity of carbon-based nanomaterials: implications for river water and wastewater effluent. Environ. Sci. Technol. 43, 2648–2653 (2009)

    Article  Google Scholar 

  101. Wick P., Manser P., Limbach L.K., Dettlaff-Weglikowska U., Krumeich F., Roth S., Stark W.J., Bruinink A.: The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol. Lett. 168, 121–131 (2007)

    Article  Google Scholar 

  102. Wadhwa S., Rea C., O’Hare P., Mathur A., Roy S.S., Dunlop P.S.M., Byrne J.A., Burke G., Meenan B., McLaughli J.A.: Comparative in vitro cytotoxicity study of carbon nanotubes and titania nanostructures on human lung epithelial cells. J. Hazard. Mater. 191, 56–61 (2011)

    Article  Google Scholar 

  103. Cui D., Tian F., Ozkan C.S., Wang M., Gao H.: Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol. Lett. 155, 73–85 (2005)

    Article  Google Scholar 

  104. Bottini M., Bruckner S., Nika K., Bottini N., Bellucci S., Magrini A., Bergamaschi A., Mustelin T.: Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicol. Lett. 160, 121–126 (2006)

    Article  Google Scholar 

  105. Manna S.K., Sarkar S., Barr J., Wisw K., Barrera E.V., Jejelowo O., Rice-Ficht A.C., Ramesh J.T.: Single-walled carbon nanotubes induces oxidative stress and activates nuclear transcription factor-kB in human keratinocytes. Nano Lett. 5, 1676–1684 (2005)

    Article  Google Scholar 

  106. Rotoli B.M., Bussolati O., Bianchi M.G., Barilli A., Balasubramanian C., Bellucci S., Bergamaschi E.: Non-functionalized multi-walled carbon nanotubes alter the paracellular permeability of human airway epithelial cells. Toxicol. Lett. 178, 95–102 (2008)

    Article  Google Scholar 

  107. Pulskamp K., Diabate S., Krug H.F.: Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol. Lett. 168, 58–74 (2007)

    Article  Google Scholar 

  108. Yacobi N.R., Phuleria H.C., Demaio L., Liang C.H., Peng C.A., Sioutas C., Borok Z., Kim K.J., Crandall E.D.: Nanoparticle effects on rat alveolar epithelial cell monolayer barrier properties. Toxicol. In Vitro. 21, 1373–1381 (2007)

    Article  Google Scholar 

  109. Zeni O., Palombo R., Bernini R., Zeni L., Sarti M., Scarf M.R.: Cytotoxicity investigation on cultured human blood cells treated with single-wall carbon nanotubes. Sensor. 8, 488–499 (2008)

    Article  Google Scholar 

  110. Davoren M., Herzog E., Casey A., Cottineau B., Chambers G., Byrne H.J., Lyng F.M.: In vitro toxicity evaluation of single walled carbon nanotubes on human A549 lung cells. Toxicol. In Vitro. 21, 438–448 (2007)

    Article  Google Scholar 

  111. Schins, R.P.: Mechanisms of genotoxicity of particles and fibers. Inhal. Toxicol. 14, 57–78 (2002)

    Article  Google Scholar 

  112. Jia G., Wang H., Yan L., Wang X., Pei R., Yan T., Zhao Y., Guo X.: Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ. Sci. Technol. 39, 1378–1383 (2005)

    Article  Google Scholar 

  113. Sotto A.D., Chiaretti M., Carru G.A., Bellucci S., Mazzanti G.: Multi-walled carbon nanotubes: Lack of mutagenic activity in the bacterial reverse mutation assay. Toxicol. Lett. 184, 192–197 (2009)

    Article  Google Scholar 

  114. Ellinger-Ziegelbauer H., Pauluhn J.: Pulmonary toxicity of multi-walled carbon nanotubes (Baytubes(R)) relative to [alpha]-quartz following a single 6 h inhalation exposure of rats and a 3 months post-exposure period. Toxicology. 266, 16–29 (2009)

    Article  Google Scholar 

  115. Muller J., Huaux F., Fonseca A., Nagy J.B., Moreauawd N., Delos M., Pinẽro E.R., Be′guin F., Kirsch-Volders M., Fenoglio I., Fubini B., Liso D.: Structural defects play a major role in the acute lung toxicity of multiwall carbon nanotubes: toxicological aspects. Chem. Res. Toxicol. 21, 1698–1705 (2008)

    Article  Google Scholar 

  116. Ma-Hock L., Treumann S., Strauss V., Brill S., Luizi F., Mertler M., Wiench K., Gamer A.O., Ravenzwaay B., Landsiedel R.: Inhalation toxicity of multiwall carbon nanotubes in rats exposed for 3 months. Toxicol. Sci. 112, 468–481 (2009)

    Article  Google Scholar 

  117. Sakamoto Y., Nakae D., Fukumori N., Tayama K., Maekawa A., Imai K., Hirose A., Nishimura T., Ohashi N., Ogata A.: Induction of mesothelioma by a single intrascrotal administration of multi-wall carbon nanotube in intact male Fischer 344 rats. J. Toxicol. Sci. 34, 65–76 (2009)

    Google Scholar 

  118. Li J.G., Li Q.N., Xu J.Y., Cai X.Q., Liu R.L., Li Y.J., Ma J.F., Li W.X.: The pulmonary toxicity of multi-wall carbon nanotubes in mice 30 and 60 days after inhalation exposure. J. Nanosci. Nanotechnol. 9, 1384–1387 (2009)

    Article  Google Scholar 

  119. Li X.Y., Brown D., Smith S., MacNee W., Donaldson K.: Short-term inflammatory responses following intratracheal instillation of fine and ultrafine carbon black in rats. Inhal. Toxicol. 11, 709–731 (1999)

    Article  Google Scholar 

  120. Magrez A., Kasa S., Salicio V., Pasquier N., Seo J.W., Celio M., Catsicas S., Schwallrer B., Forro L.: Cellular toxicity of carbon-based nanomaterials. Nano Lett. 6, 1121–1125 (2006)

    Article  Google Scholar 

  121. Casey A., Herzog E., Lyng F.M., Byrne H.J., Chambers G., Davoren M.: Single walled carbon nanotubes induce indirect cytotoxicity by medium depletion in A549 lung cells. Toxicol. Lett. 179, 78–84 (2008)

    Article  Google Scholar 

  122. Herzog E., Byrne H.J., Casey A., Davoren M., Lenz A.-G., Maier K.L., Duschl A., Oostingh G. J.: SWCNT suppress inflammatory mediator responses in human lung epithelium in vitro. Toxicol. Appl. Pharmacol. 234, 378–390 (2009)

    Article  Google Scholar 

  123. Lindberg H.K., Falck G.C.-M., Suhonen S., Vippola M., Vanhala E., Catalán J., Savolainen K., NorppaH.Genotoxicity of nanomaterials: DNA damage and micronuclei induced by carbon nanotubes and graphite nanofibres in human bronchial epithelial cells in vitro. Toxicol. Lett. 186, 166–173 (2009)

    Article  Google Scholar 

  124. Mroz R.M., Schins R.P., Li H., Drost E.M., Macnee W., Donaldson K.: Nanoparticle carbon black driven DNA damage induces growth arrest and AP-1 and NFkappaB DNA binding in lung epithelial A549 cell line. J. Physiol. Pharmacol. 58(Suppl 5), 461–470 (2007)

    Google Scholar 

  125. Hirano S., Fujitani Y., Furuyama A., Kanno S.: Uptake and cytotoxic effects of multi-walled carbon nanotubes in human bronchial epithelial cells. Toxicol. Appl. Pharmacol. 249, 8–15 (2010)

    Article  Google Scholar 

  126. Jacobsen N.R., Pojana G., White P., Muller P., Cohn C.A., Korsholm K.S., Vogel U., Marcomini A., Loft S., Wallin H.: Genotoxicity, cytotoxicity, and reactive oxygen species induced by single-walled carbon nanotubes and C(60) fullerenes in the FE1-Mutatrade mark Mouse lung epithelial cells. Environ. Mol. Mutagen. 49, 476–487 (2008)

    Article  Google Scholar 

  127. Pacurari M., Yin X.J., Zhao J., Ding M., Leonard S.S., Schwegler-Berry D., Ducatman B.S., Sbarra D., Hoover M.D., Castranova V., Vallyathan V.: Raw single-wall carbon nanotubes induce oxidative stress and activateMAPKs, AP-1, NF-kappaB, and Akt in normal and malignant human mesothelial cells. Environ. Health Perspect. 116, 1211–1217 (2008)

    Article  Google Scholar 

  128. Porter D.W., Hubbs A.F., Mercer R.R., Wu N., Wolfarth M.G., Sriram K., Leonard S., Battelli L., Schwegler-Berry D., Friend S., Andrew M., Chen B.T., Tsuruoka S., Endo M., Castranova V.: Mouse pulmonary dose- and time course-responses induced by exposure to multi-walled carbon nanotubes. Toxicology. 269, 136–147 (2010)

    Article  Google Scholar 

  129. Shvedova A.A., Kisin E., Murray A.R., Johnson V.J., Gorelik O., Arepalli S., Hubbs A.F., Mercer R.R., Keohavong P., Sussman N., Jin J., Yin J., Stone S., Chen B.T., Deye G., Maynard A., Castranova V., Baron P.A., Kagan V.E.: Inhalation vs. aspiration of single-walled carbon nanotubes in C57BL/6 mice: inflammation, fibrosis, oxidative stress, and mutagenesis. Am. J. Physiol. Lung Cell Mol. Physiol. 295, L552–L565 (2008)

    Article  Google Scholar 

  130. Takagi A., Hirose A., Nishimura T., Fukumori N., Ogata A., Ohashi N., Kitajima S., Kanno J.: Induction of mesothelioma in p53 ± mouse by intraperitoneal application of multi-wall carbon nanotube. J. Toxicol. Sci. 33, 105–116 (2008)

    Article  Google Scholar 

  131. Muller J., Delos M., Panin N., Rabolli V., Huaux F., Lison D.: Absence of carcinogenic response to multiwall carbon nanotubes in a 2-year bioassay in the peritoneal cavity of the rat. Toxicol. Sci. 110, 442–448 (2009)

    Article  Google Scholar 

  132. Tabet L., Bussy C., Amara N., Setyan A., Grodet A., Rossi M.J., Pairon J.-C., Boczkowski J., Lanone. S.: Adverse effects of industrial multiwalled carbon nanotubes on human pulmonary cells. J. Toxicol. Environ. Health A. 72, 60–73 (2009)

    Article  Google Scholar 

  133. Kolosnjaj-Tabi J., Hartman K.B., Boudjemaa S., Ananta J.S., Morgant G., Szwarc H., Wilson L.J., Moussa F.: In vivo behavior of large doses of ultrashort and full-length single-walled carbon nanotubes after oral and intraperitoneal administration to Swiss mice. ACS Nano. 4, 1481–1492 (2010)

    Article  Google Scholar 

  134. Ravichandran P., Baluchamy S., Gopikrishnan R., Biradar S., Ramesh V., Goornavar V., Thomas R., Wilson B.L., Jeffers R., Hall J.C., Ramesh G.T.: Pulmonary Biocompatibility Assessment of Inhaled Single-wall and Multiwall Carbon Nanotubes in BALB/c Mice. J. Biol. Chem. 286, 29725–29733 (2011)

    Article  Google Scholar 

  135. Guo Y.-Y., Zhang J., Zheng Y.-F., Yang J., Zhu X.-Q.: Cytotoxic and genotoxic effects of multi-wall carbon nanotubes on human umbilical vein endothelial cells in vitro. Mutat. Res. 721, 184–191 (2011)

    Article  Google Scholar 

  136. Ema M., Matsuda A., Kobayashi N., Naya M., Nakanishi J.: Evaluation of dermal and eye irritation and skin sensitization due to carbon nanotubes. Regul. Toxicol. Pharmacol. 61, 276–281 (2011)

    Article  Google Scholar 

  137. Gutiérrez-Praena D., Pichardo S., Sanchez E., Grilo A., Camean A.M., Jos A.: Influence of carboxylic acid functionalization on the cytotoxic effects induced by single wall carbon nanotubes on human endothelial cells (HUVEC). Toxicol. In Vitro. 25, 1883–1888 (2011)

    Article  Google Scholar 

  138. Wojtoniszak M., Chen X., Kalenczuk R.J., Wajda A., £apczuk J., Kurzewski M., Drozdzik M., Chu P.K., Borowiak-Palen E.: Synthesis, dispersion, and cytocompatibility of graphene oxide and reduced graphene oxide. Colloids Surf. B: Biointerf. 89, 79–85 (2012)

    Article  Google Scholar 

  139. Haniu H., Matsuda Y., Usui Y., Aoki K., Shimizu M., Ogihara N., Hara K., Okamoto M., Takanashi S., Ishigaki N., Nakamura K., Kato H., Saito N.: Toxicoproteomic evaluation of carbon nanomaterials in vitro. J. Proteomics. 74, 2703–2712 (2011)

    Article  Google Scholar 

  140. Petersen E.J., Henry T.B.: Methodological considerations for testing the ecotoxicity of carbon nanotubes and fullerenes. Rev. Environ. Toxicol. Chem. 31, 60–72 (2012)

    Article  Google Scholar 

  141. Park E.J., Yi J., Kim Y., Choi K., Park K.: Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicol. In Vitro. 24, 872–878 (2010)

    Article  Google Scholar 

  142. Shavandi Z., Ghazanfari T., Moghaddam K.N.: In vitro toxicity of silver nanoparticles on murine peritoneal macrophages. Immunopharmacol. Immunotoxicol. 33, 135–140 (2011)

    Article  Google Scholar 

  143. Park M.V.D.Z., Neigh A.M., Vermeulen J.P., de la Fonteyne L.J.J., Verharen H.W., Briedé J.J., van Loveren H., de Jong W.H.: The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomater. 32, 9810–9817 (2011)

    Article  Google Scholar 

  144. Siglienti I., Bendszus M., Kleinschnitz C., Stoll G.: Cytokine profile of iron-laden macrophages: Implications for cellular magnetic resonance imaging. J. Neuroimmunol. 173, 166–173 (2006)

    Article  Google Scholar 

  145. Müller K., Skepper J.N., Posfai M., Trivedi R., Howarth S., Corot C., Lancelot E., Thompson P.W., Brown A.P., Gillard J.H.: Effect of ultrasmall superparamagnetic iron oxide nanoparticles (Ferumoxtran-10) on human monocyte-macrophages in vitro. Biomaterials. 28, 1629–1642 (2007)

    Article  Google Scholar 

  146. Jain T.K., Reddy M.K., Morales M.A., Leslie-Pelecky D.L., Labhasetwar V.: Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Mol. Pharm. 5, 316–327 (2008)

    Article  Google Scholar 

  147. Hsiao J.-K., Chu H.-H., Wang Y.-H., Lai C.-W., Chou P.-T., Hsieh S.-T., Wang J.-L., Liu H.-M.: Macrophage physiological function after superparamagnetic iron oxide labeling. NMR Biomed. 21, 820–829 (2008)

    Article  Google Scholar 

  148. Jevprasesphant R., Penny J., Jalal R., Attwood D., McKeown N.B., D’Emanuele A.: The influence of surface modification on the cytotoxicity of PAMAM dendrimers. Int. J. Pharm. 252, 263–266 (2003)

    Article  Google Scholar 

  149. Malik N., Wiwattanapatapee R., Klopsch R., Lorenz K., Frey H., Weener J.W., Meijer E.W., Paulus W., Duncan R.: Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I labelled polyamidoamine dendrimers in vivo. J. Control. Release. 65, 133–148 (2000)

    Article  Google Scholar 

  150. Nations S., Wages M., Caas J. E., Maul J., Theodorakis C., Cobb G.P.: Acute effects of Fe2O3, TiO2, ZnO and CuO nanomaterials on Xenopus laevis. Chemosphere. 83, 1053–1061 (2011)

    Article  Google Scholar 

  151. Kasemets K., Ivask A., Dubourguier H.-C., Kahru A.: Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicol. In Vitro. 23, 1116–1122 (2009)

    Article  Google Scholar 

  152. Xia T., Kovochich M., Liong M., Mädler L., Gilbert B., Shi H., Yeh J.I., Zink J.I., Nel A.E.: Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano. 2, 2121–2134 (2008)

    Article  Google Scholar 

  153. Hutter E., Boridy S., Labrecque S., Lalancette-He′bert M., Kriz J., Winnik F.M., Maysinger D.: Microglial response to gold nanoparticles. 4, 2595–2606 (2010)

    Google Scholar 

  154. Park E.-J., Kim H., Kim Y., Yi J., Choi K., Park K.: Inflammatory responses may be induced by a single intratracheal instillation of iron nanoparticles in mice. Toxicol. 275, 65–71 (2010)

    Google Scholar 

  155. Chu M., Wu Q., Yang H., Yuan R., Hou S., Yang Y., Zou Y., Xu S., Xu K., Ji A., Sheng L.: Transfer of quantum dots from pregnant mice to pups across the placental barrier. Small. 6, 670–678 (2010)

    Article  Google Scholar 

  156. Wang L., Zhang J., Zheng Y., Yang J., Zhang Q., Zhu X.: Bioeffects of CdTe quantum dots on human umbilical vein endothelial cells. J. Nanosci. Nanotechnol. 10, 8591–8596 (2010)

    Article  Google Scholar 

  157. Yamashita K., Yoshioka Y., Higashisaka K., Mimura K., Morishita Y., Nozaki M., Yoshida T., Ogura T., Nabeshi H., Nagano K., Abe Y., Kamada H., Monobe Y., Imazawa T., Aoshima H., Shishido K., Kawai Y., Mayumi T., Tsunoda S., Itoh N., Yoshikawa T., Yanagihara I., Saito S., Tsutsumi Y.: Silica and titanium dioxide nanoparticles cause pregnancy complications in mice. Nat. Nanotechnol. 6, 321–328 (2011)

    Article  Google Scholar 

  158. Casnas J.E., Qi B., Li S., Maul J.D., Cox S.B., Das S., Green M.J.: Acute and reproductive toxicity of nano-sized metal oxides (ZnO and TiO2) to earthworms (Eisenia fetida). J. Environ. Monit. 13, 3351–3357 (2011)

    Article  Google Scholar 

  159. Ge S., Wang G., Shen Y., Zhang Q., Jia D., Wang H., Dong Q., Yin T.: Cytotoxic effects of MgO nanoparticles on human umbilical vein endothelial cells in vitro. IET Nanobiotechnol. 5, 36–40 (2011)

    Article  Google Scholar 

  160. Park S.J., Park Y.C., Lee S.W., Jeong M.S., Yu K.-N., Jung H., Lee J.-K., Kim J.S., Cho M.-H.: Comparing the toxic mechanism of synthesized zinc oxide nanomaterials by physicochemical characterization and reactive oxygen species properties. Toxicol. Lett. 207, 197–203 (2011)

    Article  Google Scholar 

  161. Asare N., Instanes C., Sandberg W.J., Refsnes M., Schwarze P., Kruszewski M., Brunborg G.: Cytotoxic and genotoxic effects of silver nanoparticles in testicular cells. Toxicol. 291, 65–72 (2012)

    Article  Google Scholar 

  162. Gonzalez C., Salazar-Garcia S., Palestino G., Martinez-Cuevas P.P., Ramirez-Lee M.A., Jurado-Manzano B.B., Rosas-Hernandez H., Gaytan-Pacheco N., Martel G., Espinosa-Tanguma R., Biris A.S., Ali S.F.: Effect of 45 nm silver nanoparticles (AgNPs) upon the smooth muscle of rat trachea: role of nitric oxide. Toxicol. Lett. 207, 306–313 (2011)

    Article  Google Scholar 

  163. Zhang J., Wages M., Cox S.B., Maul J.D., Li Y., Barnes M., Hope-Weeks L., Cobb G.P.: Effect of titanium dioxide nanomaterials and ultraviolet light coexposure on African clawed frogs (Xenopus laevis). Environ. Toxicol. Chem. 31, 176–183 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadhan Kumar De.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, S.P., Al-Mutairi, E.M. & De, S.K. Impact of Nanomaterials on Health and Environment. Arab J Sci Eng 38, 457–477 (2013). https://doi.org/10.1007/s13369-012-0324-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-012-0324-0

Keywords

Navigation