Skip to main content
Log in

A Memory Simulated Annealing Method to the Unit Commitment Problem with Ramp Constraints

  • Research Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper proposes an improved local search metaheuristic using simulated annealing method with memory component (MSA) for solving the unit commitment problem (UCP) with ramp constraints. The proposed method benefits simultaneously from the advantages of a two metaheuristics: acceptance of “bad” solutions in order to escape from local optimal configurations (SA), and prohibition for a time period of certain areas already been searched (Tabu list) as used in Tabu search method. The proposed effective MSA method is tested on several systems as the conventional ten unit test system and its multiples with 24-h scheduling horizon and the IEEE 118-bus system with 54 units. To justify the success of the MSA method, a comparison of results with those of other metaheuristic methods and hybrid methods treated by recent references is made. The results show that the proposed method obtains less total operation costs than the others with an acceptable time computing and indicate its potential for solving the UCP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

MSA:

Memory simulated annealing

TS:

Tabu search

GRASP:

Greedy randomized adaptive search procedure

EP:

Evolutionary programming

GA:

Genetic algorithm

GAUC:

Genetic algorithm based on unit characteristic classification

IPSO:

Improved particle swarm optimization

MA:

Memetic algorithm

BCGA:

Binary coded genetic algorithm

ICGA:

Integer coded genetic algorithm

LRGA:

Lagrangian relaxation-genetic algorithm

SFA:

Straightforward algorithm

F T :

Total operation cost ($)

P i (t):

Generation output of unit i at hour t (MW)

N :

Set of indexes of the generating units

I :

Index of units

N t :

Set of indexes of the time periods (h)

t :

Index of time periods

U i (t):

Status of unit i at hour t (on = 1, off = 0)

a i , b i , c i :

Coefficients of quadratic fuel cost function of unit i

S i (t):

Start up cost of unit i at hour t ($)

P D (t):

System load demand at hour t (MW)

\({P_i^{\max}}\) :

Maximum output power of unit i (MW)

\({P_i^{\min}}\) :

Minimum output power of unit i (MW)

P R(t):

System spinning reserve at hour t (MW)

ST i (t):

Start-up cost of unit i ($)

CSC i :

Cold start up cost of unit i ($)

HSC i :

Hot start up cost of unit i ($)

SC i :

Cold start up time of unit i (h)

DC i (t):

Shut-down cost of unit i ($)

\({X_i^{\rm ON}}\) :

Continuous on time of unit i (h)

\({X_i^{\rm OFF}}\) :

Continuous off time of unit i (h)

UR i :

Ramp-up rate limit of unit i (MW/h)

DR i :

Ramp-down rate limit of unit i (MW/h)

MDT i :

Minimum down time of unit i (h)

MUT i :

Minimum up time of unit i (h)

T 0,T min :

Initial and minimal temperature

α :

Temperature reduction factor

TL:

Tabu list

itrmax :

Maximum number of iterations

PL:

Priority list of units

P load :

Priority list of loads

References

  1. Wood A.J., Wollenberg B.F.: Power Generation, Operation and Control. 2nd edn. Wiley, New York (1996)

    Google Scholar 

  2. Bard J.F.: Short-term scheduling of thermal-electric generators using Lagrangian relaxation. Oper. Res. 36(5), 756–766 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. Mohammedi, R.D.: Etude du problème d’Engagement de Turbines (Unit Commitment) par la Programmation Dynamique et autres Techniques Avancées. In: Mémoire de Magister, Université Ammar Télidji de Laghouat, Algérie, Juin (2008)

  4. Kazarlis S.A., Bakirtzis A.G., Petridis V.: A genetic algorithm solution to the unit commitment problem. IEEE Trans. Power Syst. 11(1), 83–92 (1996)

    Article  Google Scholar 

  5. Simon P.S., Padhy N., Anand R.S.: An ant colony system approach for unit commitment problem. Electr. Power Syst. Res. 28(5), 315–323 (2006)

    Article  Google Scholar 

  6. Purushothama G.K., Jenkins L.: Simulated annealing with local search-a hybrid algorithm for unit commitment. IEEE Trans. Power Syst. 18(1), 273–278 (2003)

    Article  Google Scholar 

  7. Viana A., Pinho J., Matos M.: Using GRASP to solve the unit commitment problem. Ann. Oper. Res. 120(1), 117–132 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Juste K.A., Kita H., Tanaka E., Hasegawa J.: An evolutionary programming solution to the unit commitment problem. IEEE Trans. Power Syst. 14(4), 1452–1459 (1999)

    Article  Google Scholar 

  9. Zhao B., Guo C.X., Bai B.R., Cao Y.J.: An improved particle swarm optimization algorithm for unit commitment. Electr. Power Energy Syst. 28(7), 482–490 (2006)

    Article  Google Scholar 

  10. Senjyu T., Yamashiro H., Uezato K., Funabashi T.: A unit commitment problem by using genetic algorithm based on unit characteristic classification. IEEE Power Eng. Soc. Winter Meet. 1, 58–63 (2002)

    Google Scholar 

  11. Valenzuela J., Smith A.: A seeded memetic algorithm for large unit commitment problems. J. Heuristics 8(2), 173–195 (2002)

    Article  Google Scholar 

  12. Damousis I.G., Bakirtzis A.G., Dokopoulos P.S.: A solution to the unit commitment problem using integer-coded genetic algorithm. IEEE Trans. Power Syst. 19(2), 1165–1172 (2004)

    Article  Google Scholar 

  13. Cheng C.P., Liu C.W., Liu C.C.: Unit commitment by Lagrangian relaxation and genetic algorithms. IEEE Trans. Power Syst. 15(2), 707–714 (2000)

    Article  Google Scholar 

  14. Dang C., Li M.: A floating-point genetic algorithm for solving the unit commitment problem. Eur. J. Oper. Res. 181(3), 1370–1395 (2007)

    Article  MATH  Google Scholar 

  15. Sun L., Zhang Y., Jiang C.: A matrix real-coded genetic algorithm to the unit commitment problem. Electr. Power Syst. Res. 76(9), 716–728 (2006)

    Article  Google Scholar 

  16. Hosseini S.H., Khodaei A., Aminifar F.: A novel straightforward unit commitment method for large-scale power systems. IEEE Trans. Power Syst. 22(4), 2134–2143 (2007)

    Article  Google Scholar 

  17. The data of IEEE 118-bus system consisting of 54 units. http://ee.sharif.edu/IEEE_118_BUS.doc

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Arif.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arif, S., Mohammedi, R.D., Hellal, A. et al. A Memory Simulated Annealing Method to the Unit Commitment Problem with Ramp Constraints. Arab J Sci Eng 37, 1021–1031 (2012). https://doi.org/10.1007/s13369-012-0217-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-012-0217-2

Keywords

Navigation