Skip to main content
Log in

GEP Modeling of Penetration Depth in Sharp Crested Weirs

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Aeration in the waters of rivers and streams is very important to the existence and quality of aquatic life. Aeration is the process by which the area of contact between water and air is increased, either by natural methods or by mechanical devices. Contact time between water and air is also very important. Increasing the contact time of air bubbles is proportional to penetration depth of air bubbles. As the contact time between bubbles and water body increases, the aeration performance increases. In this study, the penetration depth of sharp crested weirs is modeled by using Genetic Expression Programming (GEP). The obtained models are tested with experimental data. The test results indicate that for the model equations obtained, the determination coefficients (R 2) are very high. We conclude that GEP can be successfully used for estimating penetration depth in sharp crested weirs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

B w :

Water surface width over the crest of the weir (m)

F j :

Jet Froude number

g :

Acceleration due to gravity (m/s2)

H d :

Drop height (m)

q j :

Unit discharge at the crest of the weir (m2/s)

Q :

Total discharge through the weir (m3/s)

Re j :

Jet Reynolds number

μ :

Viscosity of the fluid (water) (kg/s m)

ν :

Kinematic viscosity of the fluid (water) (m2/s)

ρ :

Density of fluid (water) (kg/m3)

α :

Angle in triangular sharp crested weir (°)

References

  1. Baylar A., Emiroglu M.E.: An experimental study of air entrainment and oxygen transfer at a water jet from a nozzle with air holes. Water Environ. Res. 76, 231 (2004)

    Article  Google Scholar 

  2. Baylar A., Bagatur T.: Study of aeration efficiency at weirs. Turk. J. Eng. Environ. Sci. 24, 255–264 (2000)

    Google Scholar 

  3. Baylar A., Bagatur T.: Aeration performance of weirs. Water SA 26(4), 521–526 (2000)

    Google Scholar 

  4. Gulliver J.S., Thene J.R., Rindels A.J.: Indexing gas transfer in self-aerated flows. J. Environ. Eng. ASCE 116(3), 503–523 (1990)

    Article  Google Scholar 

  5. Gulliver J.S., Rindels A.J.: Measurement of air–water oxygen transfer at hydraulics structures. J. Hydraul. Eng. ASCE 119(3), 328–349 (1993)

    Article  Google Scholar 

  6. Avery S.T., Novak P.: Oxygen transfer at hydraulic structures. J. Hydraul. Div. ASCE 104(11), 1521–1540 (1978)

    Google Scholar 

  7. Baylar, A.: Study on the effect of type selection of weir aerators on oxygen transfer. PhD thesis, Firat University, Elazig (in Turkish) (2002)

  8. Baylar A.: An investigation on the use of venturi weirs as an aerator. Water Qual. Res. J. Canada 38(4), 753–767 (2003)

    Google Scholar 

  9. Baylar A., Bagatur T.: Experimental studies on air entrainment and oxygen content downstream of sharp-crested weirs. Water Environ. J. 20(4), 210–216 (2006)

    Article  Google Scholar 

  10. Baylar A., Emiroglu M.E.: The effect of sharp-crested weir shape on air entrainment. Can. J. Civil Eng. 29(3), 375–383 (2002)

    Article  Google Scholar 

  11. Emiroglu M.E., Baylar A.: Experimental study of the influence of different weir types on the rate of air entrainment. Water Qual. Res. J. Canada 38(4), 769–783 (2003)

    Google Scholar 

  12. Wormleaton P.R., Tsang C.C.: Aeration performance of rectangular planform labyrinth weirs. ASCE J. Environ. Eng. 126(5), 456–465 (2000)

    Article  Google Scholar 

  13. Ito A., Yamagiwa K.T., Yoshida M., Ohkowa A.: Maximum penetration depth of air bubbles entrained by vertical liquid jet. J. Chem. Eng. Japan 33(6), 898–900 (2000)

    Article  Google Scholar 

  14. Baylar A., Bagatur T., Tuna A.: Aeration performance of triangular notch weirs at recirculating system. Water Qual. Res. J. Canada 36(1), 121–132 (2001)

    Google Scholar 

  15. Baylar A., Bagatur T.: Oxygen transfer efficiency: aeration performance of weirs. Water Eng. Manag. Part 1 148(3), 33–36 (2001)

    Google Scholar 

  16. Baylar A., Bagatur T.: Oxygen transfer efficiency: aeration performance of weirs. Water Eng. Manag. Part 2 148(4), 14–16 (2001)

    Google Scholar 

  17. Baylar A., Bagatur T., Tuna A.: Aeration performance of triangular-notch weirs. J. Chart. Inst. Water. Environ. Manag. 15(3), 203–206 (2001)

    Article  Google Scholar 

  18. Emiroglu M.E., Baylar A.: The effect of broad-crested weir shape on air entrainment. J. Hydraul. Res. 41(6), 649–655 (2003)

    Article  Google Scholar 

  19. Emiroglu M.E., Baylar A.: Influence of included angle and sill slope on air entrainment of triangular planform Labyrinth weirs. J. Hydraul. Eng. ASCE 131(3), 184–189 (2005)

    Article  Google Scholar 

  20. Emiroglu M.E., Baylar A.: Closure of ‘Influence of included angle and sill slope on air entrainment of triangular planform Labyrinth weirs’. J. Hydraul. Eng. ASCE 132(7), 747–748 (2006)

    Article  Google Scholar 

  21. Baylar A., Ozkan F.: Applications of Venturi principle to water aeration systems. Environ. Fluid Mech. 6(4), 341–357 (2006)

    Article  Google Scholar 

  22. Ozkan F., Kaya T., Baylar A.: Study of the influence of Venturi weir type on air bubble entrainment. Sci. Res. Essays 4(11), 1184–1193 (2009)

    Google Scholar 

  23. Baylar A., Unsal M., Ozkan F.: Hydraulic structures in water aeration processes.. Water Air Soil Pollut. 210(1), 87–100 (2010)

    Article  Google Scholar 

  24. ASCE: Task Committee on Application of Artificial Neural Networks in Hydrology Artificial neural networks in hydrology. J. Hydrol. Eng. ASCE 5(2), 115–137 (2000)

    Google Scholar 

  25. Kisi O.: River flow modeling using artificial neural networks. J. Hydrol. Eng. ASCE 9(1), 60–63 (2004)

    Article  Google Scholar 

  26. Kisi O.: Multi-layer perceptions with Levenberg–Marquardt optimization algorithm for suspended sediment concentration prediction and estimation. Hydrol. Sci. J. 49(6), 1025–1040 (2004)

    Article  Google Scholar 

  27. Abolpour B., Javan M., Karamouz M.: Water allocation improvement in river basin using adaptive neural fuzzy reinforcement learning approach. Appl. Soft Comput. 7(1), 265–285 (2007)

    Article  Google Scholar 

  28. Baylar A., Hanbay D., Ozpolat E.: Modeling aeration efficiency of stepped cascades by using ANFIS. CLEAN Soil Air Water 35(2), 186–192 (2007)

    Article  Google Scholar 

  29. Hanbay, D.; Türkoğlu, İ; Demir, Y.: Complex systems modeling by using ANFIS, TAINN, pp. 83–90. Muğla (2006)

  30. Hanbay, D.; Türkoğlu, İ; Demir, Y.: A wavelet neural network for intelligent modeling, TAINN, pp. 175–182. Muğla (2006)

  31. Unsal M.: Modeling of penetration depth of air bubbles entrained by sharp crested weirs using ANFIS. Int. J. Phys. Sci. 5(5), 507–517 (2010)

    Google Scholar 

  32. Baylar A., Hanbay D., Ozpolat E.: An expert system for predicting aeration performance of weirs by using ANFIS. Expert Syst. Appl. 35(3), 1214–1222 (2008)

    Article  Google Scholar 

  33. Baylar A., Hanbay D., Ozpolat E.: Closure of modeling aeration efficiency of stepped cascades by using ANFIS. CLEAN Soil Air Water 36(10–11), 820 (2008)

    Article  Google Scholar 

  34. Hanbay D., Baylar A., Batan M.: Prediction of aeration efficiency on stepped cascades by using least square support vector machines. Expert Syst. Appl. 36(3), 4248–4252 (2009)

    Article  Google Scholar 

  35. Hanbay D., Baylar A., Ozpolat E.: Predicting flow conditions over stepped chutes based on ANFIS. Soft Comput. 13(7), 701–707 (2009)

    Article  Google Scholar 

  36. Baylar A., Hanbay D., Batan M.: Application of least square support vector machines in the prediction of aeration performance of plunging overfall jets from weirs. Expert Syst. Appl. 36(4), 8368–8374 (2009)

    Article  Google Scholar 

  37. Baylar, A.; Unsal, M.; Ozkan, F.: GEP modeling of oxygen transfer efficiency prediction in aeration cascades. KSCE J. Civil Eng. (in press, 2011)

  38. Baylar, A.; Unsal, M.; Ozkan, F.: The effect of energy dissipation over stepped chutes on aeration efficiency. KSCE J. Civil Eng. (in press, 2011)

  39. Unsal, M.; Baylar, A.; Ozkan, F.; Kaya, T.: On the use of genetic expression programming in aeration: a case study for Venturi weirs. In: International Sustainable Water and Wastewater Management Symposium, pp. 26–28. October, Konya/Turkey (2010)

  40. Emiroglu M.E.: Estimating flow characteristics of different weir types and optimum dimensions of downstream receiving pool. J. Hydrol. Hydromech. 58(4), 245–260 (2010)

    Article  Google Scholar 

  41. Ferreira C.: Gene expression programming: a new adaptive algorithm for solving problems. Complex Syst. 13(2), 87–129 (2001)

    MATH  Google Scholar 

  42. Muñoz, D.G.: Discovering unknown equations that describe large data sets usinggenetic programming techniques. Masters thesis in Electronic Systems at Linköping Institute of Technology. LITH-ISY-EX–05/3697 (2005)

  43. Cevik A.: A new formulation for longitudinally stiffened webs subjected to patchloading. J. Construct. Steel Res. 63, 1328–1340 (2007)

    Article  Google Scholar 

  44. Teodorescu L., Sherwood D.: High energy physics event selection with gene expression programming. Comput. Phys. Commun. 178, 409–419 (2008)

    Article  Google Scholar 

  45. Kayadelen C., Günaydın O., Fener M., Demir A., Özvan A.: Modeling of the angle of shearing resistance of soils using soft computing systems. Expert Syst. Appl. 36, 11814–11826 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Unsal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Unsal, M. GEP Modeling of Penetration Depth in Sharp Crested Weirs. Arab J Sci Eng 37, 2163–2174 (2012). https://doi.org/10.1007/s13369-011-0037-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-011-0037-9

Keywords

Navigation