Skip to main content
Log in

A review of hemorheology: Measuring techniques and recent advances

  • Review
  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

Significant progress has been made over the years on the topic of hemorheology, not only in terms of the development of more accurate and sophisticated techniques, but also in terms of understanding the phenomena associated with blood components, their interactions and impact upon blood properties. The rheological properties of blood are strongly dependent on the interactions and mechanical properties of red blood cells, and a variation of these properties can bring further insight into the human health state and can be an important parameter in clinical diagnosis. In this article, we provide both a reference for hemorheological research and a resource regarding the fundamental concepts in hemorheology. This review is aimed at those starting in the field of hemodynamics, where blood rheology plays a significant role, but also at those in search of the most up-to-date findings (both qualitative and quantitative) in hemorheological measurements and novel techniques used in this context, including technical advances under more extreme conditions such as in large amplitude oscillatory shear flow or under extensional flow, which impose large deformations comparable to those found in the microcirculatory system and in diseased vessels. Given the impressive rate of increase in the available knowledge on blood flow, this review is also intended to identify areas where current knowledge is still incomplete, and which have the potential for new, exciting and useful research. We also discuss the most important parameters that can lead to an alteration of blood rheology, and which as a consequence can have a significant impact on the normal physiological behavior of blood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akers, W.J., J.M. Cupps, and M.A. Haidekker, 2005, Interaction of fluorescent molecular rotors with blood plasma proteins, Biorheology 42, 335–344.

    Google Scholar 

  • Alexy, T., E. Pais, R.B. Wenby, W. Hogenauer, K. Toth, H.J. Meiselman, and K.R. Kensey, 2005a, Measurement of whole blood viscosity profiles via an automated viscometer: Technical details and clinical relevance, Clin. Lab. 51, 523–529.

    Google Scholar 

  • Alexy, T., R.B. Wenby, E. Pais, L.J. Goldstein, W. Hogenauer, and H.J. Meiselman, 2005b, An automated tube-type blood viscometer: Validation studies, Biorheology 42, 237–247.

    Google Scholar 

  • Apostolidis, A.J., M.J. Armstrong, and A.N. Beris, 2015, Modeling of human blood rheology in transient shear flows, J. Rheol. 59, 275–298.

    Article  Google Scholar 

  • Apostolidis, A.J. and A.N. Beris, 2014, Modeling of the blood rheology in steady-state shear flows, J. Rheol. 58, 607–633.

    Article  Google Scholar 

  • Artmann, G.M., C. Kelemen, D. Porst, G. Buldt, and S. Chien, 1998, Temperature transitions of protein properties in human red blood cells, Biophys. J. 75, 3179–3183.

    Article  Google Scholar 

  • Artmann, G.M., K.L.P. Sung, T. Horn, D. Whittemore, G. Norwich, and C. Shu, 1997, Micropipette aspiration of human erythrocytes induces echinocytes via membrane phospholipid translocation, Biophys. J. 72, 1434–1441.

    Article  Google Scholar 

  • Barbee, J.H., 1973, The effect of temperature on the relative viscosity of human blood, Biorheology 10, 1–5.

    Google Scholar 

  • Barnes, H.A., 2000, Handbook of Elementary Rheology, Institute of Non-Newtonian Fluid Mechanics, University of Wales Aberystwyth, U.K.

    Google Scholar 

  • Barnes, H. A., 2003, A review of the rheology of filled viscoelastic systems, In: D. M. Binding and K. Walters eds., Rheology Reviews, The British Society of Rheology, Aberystwyth, 1–36.

    Google Scholar 

  • Baskurt, O.K., M. Boynard, G.C. Cokelet, P. Connes, B.M. Cooke, S. Forconi, F. Liao, M.R. Hardeman, F. Jung, H.J. Meiselman, G. Nash, N. Nemeth, B. Neu, B. Sandhagen, S. Shin, G. Thurston, and J.L. Wautier, 2009a, New guidelines for hemorheological laboratory techniques, Clin. Hemorheol. Microcirc. 42, 75–97.

    Google Scholar 

  • Baskurt, O.K., M.R. Hardeman, M. Uyuklu, P. Ulker, M. Cengiz, N. Nemeth, S. Shin, T. Alexy, and H.J. Meiselman, 2009b, Comparison of three commercially available ektacytometers with different shearing geometries, Biorheology 46, 251–264.

    Google Scholar 

  • Benis, A.M. and J. Lacoste, 1968, Study of erythrocyte aggregation by blood viscometry at low shear rates using a balance method, Circ. Res. 22, 29–42.

    Article  Google Scholar 

  • Bingham, E.C. and H. Green, 1919, Paint a plastic material and not a viscous liquid; the measurement of its mobility and yield value, Proc Am. Soc. Test. Mater. 19, 640–664.

    Google Scholar 

  • Bishop, J.J., A.S. Popel, M. Intaglietta, and P.C. Johnson, 2001, Rheological effects of red blood cell aggregation in the venous network: A review of recent studies, Biorheology 38, 263–274.

    Google Scholar 

  • Breedveld, V. and D.J. Pine, 2003, Microrheology as a tool for high-throughput screening, J. Mater. Sci. 38, 4461–4470.

    Article  Google Scholar 

  • Bremmell, K.E., A. Evans, and C.A. Prestidge, 2006, Deformation and nano-rheology of red blood cells: An AFM investigation, Colloids Surf. B 50, 43–48.

    Article  Google Scholar 

  • Brust, M., C. Schaefer, R. Doerr, L. Pan, M. Garcia, P.E. Arratia, and C. Wagner, 2013, Rheology of human blood plasma: Viscoelastic versus Newtonian behavior, Phys. Rev. Lett. 110, 078305.

    Article  Google Scholar 

  • Campo-Deaño, L., R.P.A. Dullens, D.G.A.L. Aarts, F.T. Pinho, and M.S.N. Oliveira, 2013, Viscoelasticity of blood and viscoelastic blood analogues for use in polydymethylsiloxane in vitro models of the circulatory system, Biomicrofluidics 7, 034102.

    Article  Google Scholar 

  • Campo-Deaño, L., M.S.N. Oliveira, and F.T. Pinho, 2015, A review of computational hemodynamics in middle cerebral aneurysms and rheological models for blood flow, Appl. Mech. Rev. 67, 030801.

    Article  Google Scholar 

  • Caro, C.G., T.J. Pedley, and W.A. Seed, 1974, Mechanics of the circulation, In: A. C. Guyton ed., Cardiovascular Physiology, Medical and Technical Publishers, London, 394–395.

    Google Scholar 

  • Charm, S.E. and G.S. Kurland, 1967, Static method for determining blood yield stress, Nature 216, 1121–1123.

    Article  Google Scholar 

  • Cheng, D.C.H. and F. Evans, 1965, Phenomenological characterization of rheological behaviour of inelastic reversible thixotropic and antithixotropic fluids, Brit. J. Appl. Phys. 16, 1599–1617.

    Article  Google Scholar 

  • Chien, S., 1970, Shear dependence of effective cell volume as a determinant of blood viscosity, Science 168, 977–979.

    Article  Google Scholar 

  • Chien, S., S. Usami, H.M. Taylor, J.L. Lundberg, and M.I. Gregerse, 1966, Effects of hematocrit and plasma proteins on human blood rheology at low shear rates, J. Appl. Physiol. 21, 81–87.

    Google Scholar 

  • Cho, Y.I. and D.J. Cho, 2011, Hemorheology and microvascular disorders, Korean Circ. J. 41, 287–295.

    Article  Google Scholar 

  • Cokelet, G.R. and H.J. Meiselman, 2007, Macro- and micro-rheological properties of blood, In: O.K. Baskurt, M.R. Hardeman, M.W. Rampling, and H.J. Meiselman, eds., Handbook of Hemorheology and Hemodynamics, IOS Press, Amsterdam, 45–71.

    Google Scholar 

  • Dao, M., C.T. Lim, and S. Suresh, 2003, Mechanics of the human red blood cell deformed by optical tweezers, J. Mech. Phys. Solids 51, 2259–2280.

    Article  Google Scholar 

  • Dintenfass, L., 1979, Clinical applications of blood-viscosity factors and functions-especially in the cardiovascular disorders, Biorheology 16, 69–84.

    Google Scholar 

  • Dintenfass, L., 1985, Blood viscosity, Hyperviscosity & Hyperviscosaemia, MTP Press, Boston.

    Google Scholar 

  • Dobbe, J.G.G., M.R. Hardeman, G.J. Streekstra, and C.A. Grimbergen, 2004, Validation and application of an automated rheoscope for measuring red blood cell deformability distributions in different species, Biorheology 41, 65–77.

    Google Scholar 

  • Drasler, W.J., C.M. Smith, and K.H. Keller, 1989, Viscoelastic properties of the oxygenated sickle erythrocyte-membrane, Biorheology 26, 935–949.

    Google Scholar 

  • Eguchi, Y. and T. Karino, 2008, Measurement of rheologic property of blood by a falling-ball blood viscometer, Ann. Biomed. Eng. 36, 545–553.

    Article  Google Scholar 

  • Eugster, M., K. Hausler, and W.H. Reinhart, 2007, Viscosity measurements on very small capillary blood samples, Clin. Hemorheol. Microcirc. 36, 195–202.

    Google Scholar 

  • Ewoldt, R.H., A.E. Hosoi, and G.H. McKinley, 2008, New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear, J. Rheol. 52, 1427–1458.

    Article  Google Scholar 

  • Fåhræus, R., 1929, The suspension stability of the blood, Physiol. Rev. 9, 241–274.

    Google Scholar 

  • Fåhræus, R. and T. Lindqvist, 1931, The viscosity of the blood in narrow capillary tubes, Am. J. Physiol. 96, 562–568.

    Google Scholar 

  • Faivre, M., M. Abkarian, K. Bickraj, and H.A. Stone, 2006, Geometrical focusing of cells in a microfluidic device: An approach to separate blood plasma, Biorheology 43, 147–159.

    Google Scholar 

  • Fischer, T.M., M. Stohr-Lissen, and H. Schmid-Schönbein, 1978, The red cell as a fluid droplet: tank tread-like motion of the human erythrocyte membrane in shear flow, Science 202, 894–896.

    Article  Google Scholar 

  • Fontes, A., M.L.B. Castro, M.M. Brandão, H.P. Fernandes, A.A. Thomaz, R.R. Huruta, L.Y. Pozzo, L.C. Barbosa, F.F. Costa, S.T.O. Saad, and C.L. Cesar, 2011, Mechanical and electrical properties of red blood cells using optical tweezers, J. Opt. 13, 044012.

    Article  Google Scholar 

  • Haidekker, M.A., A.G. Tsai, T. Brady, H.Y. Stevens, J. A. Frangos, E. Theodorakis and M. Intaglietta, 2002, A novel approach to blood plasma viscosity measurement using fluorescent molecular rotors, Am. J. Physiol.-Heart Circul. Physiol. 282, H1609–H1614.

    Article  Google Scholar 

  • Harkness, J., 1971, The viscosity of human blood plasma; its measurement in health and disease, Biorheology 8, 171–193.

    Google Scholar 

  • Hess, W.R., 1915, Does blood obey the general streaming-law of liquids?, Pflug. Arch. Ges. Phys. 162, 187–224.

    Article  Google Scholar 

  • Hyun, K., M. Wilhelm, C.O. Klein, K.S. Cho, J.G. Nam, K.H. Ahn, S.J. Lee, R.H. Ewoldt, and G.H. McKinley, 2011, A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS), Prog. Polym. Sci. 36, 1697–1753.

    Article  Google Scholar 

  • International Committee for Standardisation in Haematology, 1984, Recommendation for a selected method for the measurement of plasma viscosity, J. Clin. Pathol. 37, 1147-1152.

  • Jan, K.M., S. Chien, and J.T.J. Bigger, 1975, Observations on blood viscosity changes after acute myocardial infarction, Circulation 51, 1079–1084.

    Article  Google Scholar 

  • Johnn, H., C. Phipps, S. Gascoyne, C. Hawkey, and M.W. Rampling, 1992, A comparison of the viscometric properties of the blood from a wide-range of mammals, Clin. Hemorheol. 12, 639–647.

    Google Scholar 

  • Kang, Y.J. and S.J. Lee, 2013, Blood viscoelasticity measurement using steady and transient flow controls of blood in a microfluidic analogue of Wheastone-bridge channel, Biomicrofluidics 7.

    Google Scholar 

  • Kang, Y.J. and S. Yang, 2013, Integrated microfluidic viscometer equipped with fluid temperature controller for measurement of viscosity in complex fluids, Microfluid. Nanofluid. 14, 657–668.

    Article  Google Scholar 

  • Kim, S., Y.I. Cho, A.H. Jeon, B. Hogenauer, and K.R. Kensey, 2000, A new method for blood viscosity measurement, J. Non-Newton. Fluid Mech. 94, 47–56.

    Article  Google Scholar 

  • Koenig, W., M. Sund, B. Filipiak, A. Döring, H. Löwel, and E. Ernst, 1998, Plasma viscosity and the risk of coronary heart disease-Results from the MONICA-Augsburg cohort study, 1984 to 1992, Arterioscler. Thromb. Vasc. Biol. 18, 768–772.

    Article  Google Scholar 

  • Koutsouris, D., R. Guillet, J.C. Lelievre, M.T. Guillemin, P. Bertholom, Y. Beuzard, and M. Boynard, 1988, Determination of erythrocytes transit times through micropores. 1. Basic Operational Principles, Biorheology 25, 763–772.

    Google Scholar 

  • Langstroth, L., 1919, Blood viscosity. I. Conditions affecting the viscosity of blood after withdrawal from the body, J. Exp. Med. 30, 597–606.

    Article  Google Scholar 

  • Larson, R.G., 2005, The rheology of dilute solutions of flexible polymers: Progress and problems, J. Rheol. 49, 1–70.

    Article  Google Scholar 

  • Laurent, V.M., S. Henon, E. Planus, R. Fodil, M. Balland, D. Isabey, and F. Gallet, 2002, Assessment of mechanical properties of adherent living cells by bead micromanipulation: Comparison of magnetic twisting cytometry vs optical tweezers, J. Biomech. Eng.-Trans. ASME 124, 408–421.

    Article  Google Scholar 

  • Le Devehat, C., M. Vimeux, and T. Khodabandehlou, 2004, Blood rheology in patients with diabetes mellitus, Clin. Hemorheol. Microcirc. 30, 297–300.

    Google Scholar 

  • Lee, B.K., T. Alexy, R.B. Wenby, and H.J. Meiselman, 2007, Red blood cell aggregation quantitated via Myrenne aggregometer and yield shear stress, Biorheology 44, 29–35.

    Google Scholar 

  • Lee, B.K., S. Xue, J. Nam, H. Lim, and S. Shin, 2011a, Determination of the blood viscosity and yield stress with a pressure-scanning capillary hemorheometer using constitutive models, Korea-Aust. Rheol. J. 23, 1–6.

    Article  Google Scholar 

  • Lee, B.S., Y.U. Lee, H.S. Kim, T.H. Kim, J. Park, J.G. Lee, J. Kim, H. Kim, W.G. Lee, and Y.K. Cho, 2011b, Fully integrated lab-on-a-disc for simultaneous analysis of biochemistry and immunoassay from whole blood, Lab Chip 11, 70–78.

    Article  Google Scholar 

  • Lee, S.S., Y. Yim, K.H. Ahn, and S.J. Lee, 2009, Extensional flow-based assessment of red blood cell deformability using hyperbolic converging microchannel, Biomed. Microdevices 11, 1021–1027.

    Article  Google Scholar 

  • Li, T., Y. Fan, Y. Cheng, and J. Yang, 2013, An electrochemical lab-on-a-CD system for parallel whole blood analysis, Lab. Chip. 13, 2634–2640.

    Article  Google Scholar 

  • Li, X.J., Z.L. Peng, H. Lei, M. Dao, and G.E. Karniadakis, 2014, Probing red blood cell mechanics, rheology and dynamics with a two-component multi-scale model, Philos. Trans. R. Soc. A 372.

    Google Scholar 

  • Li, Y.J., C. Wen, H.M. Xie, A.P. Ye, and Y.J. Yin, 2009, Mechanical property analysis of stored red blood cell using optical tweezers, Colloid Surf. B 70, 169–173.

    Article  Google Scholar 

  • Lim, C.T., M. Dao, S. Suresh, C.H. Sow, and K.T. Chew, 2004, Large deformation of living cells using laser traps, Acta Mater. 52, 1837–1845.

    Article  Google Scholar 

  • Lim, H.J., Y.J. Lee, J.H. Nam, S. Chung, and S. Shin, 2010, Temperature- dependent threshold shear stress of red blood cell aggregation, J. Biomech. 43, 546–550.

    Article  Google Scholar 

  • Lo Presti, R., E. Hopps, and G. Caimi, 2014, Hemorheological abnormalities in human arterial hypertension, Korea-Aust. Rheol. J. 26, 199–204.

    Article  Google Scholar 

  • Marcinkowska-Gapinska, A., J. Gapinski, W. Elikowski, F. Jaroszyk, and L. Kubisz, 2007, Comparison of three rheological models of shear flow behavior studied on blood samples from post-infarction patients, Med. Biol. Eng. Comput. 45, 837–844.

    Article  Google Scholar 

  • Mark, M., K. Hausler, J. Dual, and W.H. Reinhart, 2006, Oscillating viscometer-Evaluation of a new bedside test, Biorheology 43, 133–146.

    Google Scholar 

  • Marton, Z., G. Kesmarky, J. Vekasi, A. Cser, R. Russai, B. Horvath, and K. Toth, 2001, Red blood cell aggregation measurements in whole blood and in fibrinogen solutions by different methods, Clin. Hemorheol. Microcirc. 24, 75–83.

    Google Scholar 

  • Merrill, E.W., 1969, Rheology of blood, Physiol. Rev. 49, 863–888.

    Google Scholar 

  • Merrill, E.W., H. Shin, G. Cokelet, E.R. Gilliland, R.E. Wells, and A. Britten, 1963, Rheology of human blood, near and at zero flow - Effects of temperature and hematocrit level, Biophys. J. 3, 199–213.

    Google Scholar 

  • Mills, J.P., M. Diez-Silva, D.J. Quinn, M. Dao, M.J. Lang, K.S.W. Tan, C.T. Lim, G. Milon, P.H. David, O. Mercereau-Puijalon, S. Bonnefoy, and S. Suresh, 2007, Effect of plasmodial RESA protein on deformability of human red blood cells harboring Plasmodium falciparum, Proc. Natl. Acad. Sci. U.S.A. 104, 9213–9217.

    Article  Google Scholar 

  • Moreno, L., F. Calderas, G. Sanchez-Olivares, L. Medina-Torres, A. Sanchez-Solis, and O. Manero, 2015, Effect of cholesterol and triglycerides levels on the rheological behavior of human blood, Korea-Aust. Rheol. J. 27, 1–10.

    Article  Google Scholar 

  • Morris, C.L., C.M. Smith, and P.L. Blackshear, 1987, A new method for measuring the yield stress in thin-layers of sedimenting blood, Biophys. J. 52, 229–240.

    Article  Google Scholar 

  • Muramoto, Y. and Y. Nagasaka, 2011, High-speed sensing of microliter-order whole-blood viscosity using laser-induced capillary wave, J. Biorheology 25, 43–51.

    Article  Google Scholar 

  • Neuman, K.C. and A. Nagy, 2008, Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy, Nat. Methods 5, 491–505.

    Article  Google Scholar 

  • Ong, P.K., D. Lim, and S. Kim, 2010, Are microfluidics-based blood viscometers ready for point-of-care applications? A review, Crit. Rev. Biomed. Eng. 38, 189–200.

    Article  Google Scholar 

  • Owens, R.G., 2006, A new micro structure-based constitutive model for human blood, J. Non-Newton. Fluid Mech. 140, 57–70.

    Article  Google Scholar 

  • Picart, C., P.H. Carpentier, H. Galliard, and J.M. Piau, 1999, Blood yield stress in systemic sclerosis, Am. J. Physiol.-Heart Circul. Physiol. 276, H771–H777.

    Google Scholar 

  • Picart, C., J.M. Piau, H. Galliard, and P. Carpentier, 1998, Human blood shear yield stress and its hematocrit dependence, J. Rheol. 42, 1–12.

    Article  Google Scholar 

  • Pirofsky, B., 1953, The determination of blood viscosity in man by a method based on Poiseuille's law, J. Clin. Invest. 32, 292–298.

    Article  Google Scholar 

  • Popel, A.S. and P.C. Johnson, 2005, Microcirculation and hemorheology, Annu. Rev. Fluid Mech. 37, 43–69.

    Article  Google Scholar 

  • Pozrikidis, C., 2003, Modeling and Simulation of Capsules and Biological Cells, CRC Press, Boca Raton.

    Book  Google Scholar 

  • Puig-De-Morales-Marinkovic, M., K.T. Turner, J.P. Butler, J.J. Fredberg, and S. Suresh, 2007, Viscoelasticity of the human red blood cell, Am. J. Physiol.: Cell Physiol. 293, C597–C605.

    Article  Google Scholar 

  • Radtke, H., R. Schneider, R. Witt, H. Kiesewetter, and H. Schmid-Schönbein, 1984, A measuring device to determine a universal parameter for the flow characteristics of blood: measurement of the yield shear stress in a branched capillary, Adv. Exp. Med. Biol. 169, 851–857.

    Article  Google Scholar 

  • Rampling, M.W., 2007, Compositional properties of blood, In: O.K. Baskurt, M.R. Hardeman, M.W. Rampling, and H.J. Meiselman, eds., Handbook of Hemorheology and Hemodynamics, IOS Press, Amsterdam, 34–44.

    Google Scholar 

  • Replogle, R.L., H.J. Meiselman, and E.W. Merrill, 1967, Clinical implications of blood rheology studies, Circulation 36, 148–160.

    Article  Google Scholar 

  • Rosencranz, R. and S.A. Bogen, 2006, Clinical laboratory measurement of serum, plasma, and blood viscosity, Am. J. Clin. Pathol. 125, S78–86.

    Google Scholar 

  • Schmid-Schönbein, H., P. Gaehtgens, and H. Hirsch, 1968, On the shear rate dependence of red cell aggregation in vitro, J. Clin. Invest. 47, 1447–1454.

    Article  Google Scholar 

  • Secomb, T.W., 1987, Flow-dependent rheological properties of blood in capillaries, Microvasc. Res. 34, 46–58.

    Article  Google Scholar 

  • Sharma, K. and S.V. Bhat, 1992, Non-Newtonian rheology of leukemic blood and plasma: are n and k parameters of power law model diagnostic?, Physiol. Chem. Phys. Med. NMR 24, 307–312.

    Google Scholar 

  • Shin, S., J.X. Hou, J.S. Suh, and M. Singh, 2007, Validation and application of a microfluidic ektacytometer (RheoScan-D) in measuring erythrocyte deformability, Clin. Hemorheol. Microcirc. 37, 319–328.

    Google Scholar 

  • Shin, S., S.W. Lee, and Y.L. Ku, 2004, Measurements of blood viscosity using a pressure-scanning slit viscometer, KSME Int. J. 18, 1036–1041.

    Google Scholar 

  • Shung, K.K., 2006, Diagnostic Ultrasound: Imaging and Blood Flow Measurements, CRC Press, Boca Raton.

    Google Scholar 

  • Simchon, S., K. M. Jan, and S. Chien, 1987, Influence of Reduced Red-Cell Deformability on Regional Blood-Flow, Am. J. Physiol. 253, H898–H903.

    Google Scholar 

  • Smith, P.D., R.C.D. Young, and C.R. Chatwin, 2010, A MEMS viscometer for unadulterated human blood, Measurement 43, 144–151.

    Article  Google Scholar 

  • Sousa, P.C., J. Carneiro, F.T. Pinho, M.S.N. Oliveira, and M.A. Alves, 2013, Steady and large-oscillatory shear rheology of whole blood, Biorheology 50, 269–282.

    Google Scholar 

  • Sousa, P.C., F.T. Pinho, M.S.N. Oliveira, and M.A. Alves, 2010, Efficient microfluidic rectifiers for viscoelastic fluid flow, J. Non-Newton. Fluid Mech. 165, 652–671.

    Article  Google Scholar 

  • Sousa, P.C., F.T. Pinho, M.S.N. Oliveira, and M.A. Alves, 2011, Extensional flow of blood analog solutions in microfluidic devices, Biomicrofluidics 5, 014108–014119.

    Article  Google Scholar 

  • Squires, T.M. and T.G. Mason, 2010, Fluid mechanics of microrheology, Annu. Rev. Fluid Mech. 42, 413–438.

    Article  Google Scholar 

  • Srivastava, N., R.D. Davenport, and M.A. Burns, 2005, Nanoliter viscometer for analyzing blood plasma and other liquid samples, Anal. Chem. 77, 383–392.

    Article  Google Scholar 

  • Steffen, P., C. Verdier, and C. Wagner, 2013, Quantification of depletion-induced adhesion of red blood cells, Phys. Rev. Lett. 110, 018102–018105.

    Article  Google Scholar 

  • Sutera, S.P. and R. Skalak, 1993, The history of Poiseuille law, Annu. Rev. Fluid Mech. 25, 1–19.

    Article  Google Scholar 

  • Taguchi, Y., R. Nagamachi, and Y. Nagasaka, 2009, Micro optical viscosity sensor for in situ measurement based on a laserinduced capillary wave, J. Therm. Sci. Technol. 4, 98–108.

    Article  Google Scholar 

  • Thiriet, M., 2008, Biology and Mechanics of Blood Flows, Springer, New York.

    Book  Google Scholar 

  • Thurston, G.B., 1972, Viscoelasticity of human blood, Biophys. J. 12, 1205–1217.

    Article  Google Scholar 

  • Thurston, G.B., 1979, Rheological parameters for the viscosity viscoelasticity and thixotropy of blood, Biorheology 16, 149–162.

    Google Scholar 

  • Thurston, G.B., 1996, Viscoelastic properties of blood and blood analogs, In: T.V. How ed., Advances in Hemodynamics and Hemorheology, Vol. 1, JAI Press LTD., London, 1–30.

    Chapter  Google Scholar 

  • Thurston, G.B. and N.M. Henderson, 2006, Effects of flow geometry on blood viscoelasticity, Biorheology 43, 729–746.

    Google Scholar 

  • Thurston, G.B. and N.M. Henderson, 2007, Viscoelasticity of human blood, In: O.K. Barskurt, M.R. Hardeman, M.W. Rampling, and H.J. Meiselman, eds., Handbook of Hemorheology and Hemodynamics, IOS Press, Amsterdam, 72–90.

    Google Scholar 

  • Travagli, V., I. Zanardi, L. Boschi, A. Gabbrielli, V.A.M. Mastronuzzi, R. Cappelli, and S. Forconi, 2008, Comparison of blood viscosity using a torsional oscillation viscometer and a rheometer, Clin. Hemorheol. Microcirc. 38, 65–74.

    Google Scholar 

  • Valant, A. Z., L. Ziberna, Y. Papaharilaou, A. Anayiotos and G. C. Georgiou, 2011, The influence of temperature on rheological properties of blood mixtures with different volume expanders-implications in numerical arterial hemodynamics simulations, Rheol. Acta 50, 389–402.

    Article  Google Scholar 

  • Vlastos, G., D. Lerche, B. Koch, O. Samba, and M. Pohl, 1997, The effect of parallel combined steady and oscillatory shear flows on blood and polymer solutions, Rheol. Acta 36, 160–172.

    Article  Google Scholar 

  • Waite, L., 2006, Biofluid Mechanics in Cardiovascular Systems, McGraw-Hill, New York.

    Google Scholar 

  • Yaginuma, T., M.S. Oliveira, R. Lima, T. Ishikawa, and T. Yamaguchi, 2013, Human red blood cell behavior under homogeneous extensional flow in a hyperbolic-shaped microchannel, Biomicrofluidics 7, 054110.

    Article  Google Scholar 

  • Yao, A., M. Tassieri, M. Padgett, and J. Cooper, 2009, Microrheology with optical tweezers, Lab Chip 9, 2568–2575.

    Article  Google Scholar 

  • Yilmaz, F. and M.Y. Gundogdu, 2008, A critical review on blood flow in large arteries; relevance to blood rheology, viscosity models, and physiologic conditions, Korea-Aust. Rheol. J. 20, 197–211.

    Google Scholar 

  • Zeng, H. and Y. Zhao, 2009, On-chip blood viscometer towards point-of-care hematological diagnosis, 22nd IEEE International Conference, Sorento.

    Google Scholar 

  • Zhu, H.Y., I. Sencan, J. Wong, S. Dimitrov, D. Tseng, K. Nagashima and A. Ozcan, 2013, Cost-effective and rapid blood analysis on a cell-phone, Lab Chip 13, 1282–1288.

    Article  Google Scholar 

  • Zydney, A.L., J.D. Oliver, and C.K. Colton, 1991, A constitutive equation for the viscosity of stored red-cell suspensions-Effect of hematocrit, shear rate, and suspending phase, J. Rheol. 35, 1639–1680.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mónica S. N. Oliveira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sousa, P.C., Pinho, F.T., Alves, M.A. et al. A review of hemorheology: Measuring techniques and recent advances. Korea-Aust. Rheol. J. 28, 1–22 (2016). https://doi.org/10.1007/s13367-016-0001-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-016-0001-z

Keywords

Navigation