Skip to main content
Log in

Effect of manufacturing condition in PC/PMMA/CNT nanocomposites extrusion on the electrical, morphological, and mechanical properties

  • Articles
  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

Polycarbonate (PC)/poly(methyl methacrylate) (PMMA)/carbon nanotube (CNT) nanocomposites were prepared using a twin screw extruder. The effect of CNT content, screw speed, and manufacturing method on the electrical conductivity, morphology, and mechanical properties were investigated using a surface resistivity meter, SEM, XRD, and UTM. There existed the processing condition which lowered the surface resistivity of nanocomposites considerably. Three different manufacturing methods were tested on the effectiveness of CNTs and the expected mechanism was proposed. The electrical conductive nanocomposites were obtained using the incompatibility between the polymers, the difference of affinity of the polymers to CNTs, an optimum processing condition, and a proper manufacturing method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrews, R., D. Jacques, D. Qian, and T. Rantell, 2002, Multi-wall carbon nanotubes: synthesis and application, Accounts Chem. Res. 35, 1008–1017.

    Article  Google Scholar 

  • Baudouin, A.C., J. Devaux, and C. Bailly, 2010, Localization of carbon nanotubes at the interface in blends of polyamide and ethylene-acrylate copolymer, Polymer 51, 1341–1354.

    Article  Google Scholar 

  • Breuer, O. and U. Sundararaj, 2004, Big returns from small fibers: a review of polymer/carbon nanotube composites, Polym. Composites 25, 630–645.

    Article  Google Scholar 

  • Cochrane, C., V. Koncar, M. Lewandowski, and C. Dufour, 2007, Design and development of a flexible strain sensor for textile structures based on a conductive polymer composite, Sensors 7, 473–492.

    Article  Google Scholar 

  • Demczyk, B.G., Y.M. Wang., J. Cumings, M. Hetman, W. Han, A. Zettl, and R.O. Ritchie, 2002, Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes, Mater. Sci. Eng. A-Struct. 334, 173–178.

    Article  Google Scholar 

  • Du, J.-H., J. Bai, and H.-M. Cheng, 2007, The present status and key problems of carbon nanotube based polymer composites, Express Polym. Lett. 1, 253–273.

    Article  Google Scholar 

  • Feller, F.F. and Y. Grohens, 2004, Evolution of electrical properties of some conductive polymer composite textiles with organic solvent vapours diffusion, Sensor Actuat. B-Chem. 97, 231–242.

    Article  Google Scholar 

  • Göldel, A., G. Kasaliwal, and P. Pötschke, 2009, Selective localization and migration of multiwalled carbon nanotubes in blends of polycarbonate and poly(styrene-acrylonitrile), Macromol. Rapid Comm. 20, 423–429.

    Article  Google Scholar 

  • Göldel, A., G. Kasaliwal, P. Pötschke, and G. Heinrich, 2012, The kinetics of CNT transfer between immiscible blend phases during melt mixing, Polymer 53, 411–421.

    Article  Google Scholar 

  • Grimes, C.A., E.C. Dickey, C. Mungle, K.G. Ong, and D. Qian, 2001, Effect of purification of the electrical conductivity and complex permittivity of multiwall carbon nanotubes, J. Appl. Phys. 90, 4134–4137.

    Article  Google Scholar 

  • Kasaliwal, G. R., S. Pegel, A. Göldel, P. Pötschke, and G. Heinrich, 2010, Analysis of agglomerate dispersion mechanisms of multiwalled carbon nanotubes during melt mixing in polycarbonate, Polymer 51, 2708–2720.

    Article  Google Scholar 

  • Kim, S., J.W. Lee, I.-K. Hong and S. Lee, 2014, Electrical conductivity enhancement of polycarbonate/poly(styrene-co-acrylonitril)/carbon nanotube composites by high intensity ultrasound, Macromol. Res. 22, 154–159.

    Article  Google Scholar 

  • Ko, S.W., R.K. Gupta, S.N. Bhattacharya, and H.J. Choi, 2010, Rheology and physical characteristics of synthetic biodegradable aliphatic polymer blends dispersed with MWNTs, Macromol. Mater. Eng. 295, 320–328.

    Article  Google Scholar 

  • Li, Y. and H. Shimizu, 2006, Morphological investigations on the nanostructured poly(vinylidene fluoride)/polyamide 11 blends by high shear processing, Eur. Polym. J. 42, 3202–3211.

    Article  Google Scholar 

  • Li, Y. and H. Shimizu, 2011, Fabrication of nanostructured poly-carbonate/poly(methyl methacrylate) blends with improved optical and mechanical properties by high-shear processing, Polym. Eng. Sci. 51, 1437–1445.

    Article  Google Scholar 

  • Liebscher, M., L. Tzounis, P. Pötschke, and G. Heinrich, 2013, Influence of the viscosity ratio in PC/SAN blends filled with MWCNTs on the morphological, electrical, and melt rheological properties, Polymer 54, 6801–6808.

    Article  Google Scholar 

  • Lim, S.-K., E.-P. Hong, Y.-H. Song, H.J. Choi, and I.-J. Chin, 2010, Ternary poly(styrene-co-acrylonitrile)/poly(vinyl chloride) blend composites with multi-walled carbon nanotubes and enhanced physical characteristics, Macromol. Mater. Eng. 295, 329–335.

    Article  Google Scholar 

  • McClory, C., P. Pötschke, and T. McNally, 2011, Influence of screw speed on electrical and rheological percolation of melt-mixed high-impact polystyrene/MWCNT nanocomposites, Macromol. Mater. Eng. 296, 59–69.

    Article  Google Scholar 

  • Nuriel S., L.Liu, A.H. Barber, and H.D. Wagner, 2005, Direct measurement of multiwall nanotube surface tension, Chem. Phys. Lett. 404, 263–266.

    Article  Google Scholar 

  • Pötschke, P., A.R Bhattacharyya, and A. Janke, 2003, Morphology and electrical resistivity of melt mixed blends of polyethylene and carbon nanotube filled polycarbonate, Polymer 44, 8061–8069.

    Article  Google Scholar 

  • Pötschke, P., S. Pegel, M. Claes, and D. Bonduel, 2008, A novel strategy to incorporate carbon nanotubes into thermoplastic matrices, Macromol. Rapid Comm. 29, 244–251.

    Article  Google Scholar 

  • Pötschke, P., T. Villmow, and B. Krause, 2013, Melt mixed PCL/MWCNT composites prepared at different rotation speeds: Characterization of rheological, thermal, and electrical properties, molecular weight, MWCNT macrodispersion, and MWCNT length distribution, Polymer 54, 3071–3078.

    Article  Google Scholar 

  • Shi, Y., Y. Li, J. Wu, T. Huang, C. Chen, and Y. Peng, 2011, Toughening of poly(L-lactide)/multiwalled carbon nanotubes nanocomposite with ethylene-co-vinyl acetate, J. Polym. Sci. Polym. Phys. 49, 267–276.

    Article  Google Scholar 

  • Shimizu, H., Y. Li, A. Kaito, and H. Sano, 2005, Formation of nanostructured PVDF/PA11 blends using high-shear processing, Marcromolecules 38, 7880–7883.

    Article  Google Scholar 

  • Solid surface energy data (SFE) for common polymers, http://www.surface-tension.de/solid-surface-energy.htm.

  • Strümpler, R. and J. Glatz-Reichenbach, 1999, Conducting polymer composites, J. Electroceram. 3, 329–346.

    Article  Google Scholar 

  • Sumita, M., K. Sakata, S. Asai, K. Miyasaka, and H. Nakagawa, 1991, Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black, Polym. Bull. 25, 265–271.

    Article  Google Scholar 

  • Tjong, S.C., 2006, Structural and mechanical properties of polymer nanocomposites, Mater. Sci. Eng. R. 53, 73–197.

    Article  Google Scholar 

  • Wu, M. and L. Shaw, 2006, Electrical and mechanical behaviors of carbon nanotube-filled polymer blends, J. Appl. Polym. Sci. 99, 477–488.

    Article  Google Scholar 

  • Wu, S., 1982, Polymer Interface and Adhesion, Marcel Dekker Inc., New York.

    Google Scholar 

  • Zhang, R., J.C. Agar, and C.P. Wong, 2011, Conductive polymer composites, Encyclopedia of Polymer Science and Technology, John Wiley & Sons, Inc.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sangmook Lee or Jae Wook Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J., Lee, S. & Lee, J.W. Effect of manufacturing condition in PC/PMMA/CNT nanocomposites extrusion on the electrical, morphological, and mechanical properties. Korea-Aust. Rheol. J. 27, 55–62 (2015). https://doi.org/10.1007/s13367-015-0007-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-015-0007-y

Keywords

Navigation