Skip to main content
Log in

A numerical study of the effect of catheter angle on the blood flow characteristics in a graft during hemodialysis

  • Article
  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

For patients with renal failure, renal replacement therapies are needed. Hemodialysis is a widely used renal replacement method to remove waste products. It is important to improve the patency rate of the vascular access for efficient dialysis. Since some complications such as an intimal hyperplasia are associated with the flow pattern, the hemodynamics in the vascular access must be considered to achieve a high patency rate. In addition, the blood flow from an artificial kidney affects the flow in the vascular access. Generally, the clinical techniques of hemodialysis such as the catheter angle or dialysis dose have been set up empirically. In this study, a numerical analysis is performed on the effect of the catheter angle on the flow in the graft. Blood is assumed to be a non-Newtonian fluid. According to the high average wall shear stress value, the leucocytes and platelets can be activated not only at the arterial anastomosis, but also at the bottom of the venous graft, when the catheter angle is not zero. For a catheter angle less than five degrees, there is a low shear and high oscillatory shear index region that appears at the venous graft and the venous anastomosis. Thus, a catheter angle less than five degrees should be avoided to prevent graft failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beathard, G., 1994, The treatment of vascular access graft dysfunction: a nephrologist’s view and experience, Adv. Renal Replace. Th. 1(2), 131–147.

    CAS  Google Scholar 

  • Lee, B.K., S. Xue, J. Nam, H. Lim, and S. Shin, 2011, Determination of the blood viscosity and yield stress with a preesure-scanning capillary hemorheometer using constitutive models, Korea-Aust. Rheol. J. 23(1), 1–6.

    Article  Google Scholar 

  • Cho, Y. and K. Kensey, 1991, Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: Steady flows. Biorheology. condition, T.N.C.C.F.C., Chronic Kidney Disease, Royal College of Physicians.

    Google Scholar 

  • Dixon, B.S., G.J. Beck, L.M. Dember, M.A. Vazquez, A. Greenberg, J.A. Delmez, M. Allon, J. Himmelfarb, B. Hu, T. Greene, M.K. Radeva, I.J. Davidson, T.A. Ikizler, G.L. Braden, J.H. Lawson, J.R. Cotton Jr., J.W. Kusek, and H.I. Feldman, 2011, Use of aspirin associates with longer primary patency of hemodialysis grafts, J. Am. Soc. Nephrol. 22(4), 773–781.

    Article  CAS  Google Scholar 

  • Decorato, I., Z. Kharboutly, C. Legallais, and A.V. Salsac, 2011, Numerical study of the influence of wall compliance on the hemodynamics in a patient-specific arteriovenous fistula, Comput. Methods Biomech. Biomed. Eng. 14(Sup1), 121–123

    Article  Google Scholar 

  • Fry, D.L., 1968, Acute vascular endothelial changes associated with increased blood velocity gradients, Circ. Res. 22(2), 165–197.

    Article  CAS  Google Scholar 

  • Fung, Y., 1993, Biomechanics: Mechanical properties of living tissues.

    Google Scholar 

  • Gijsen, F.J.H., F.N. Vosse, and J.D. Janssen, 1998, Wall shear stress in backward-facing step flow of a red blood cell suspension, Biorheology 35(4), 263–279.

    Article  CAS  Google Scholar 

  • Glor, F., Q. Long, A. Hughes, and A. Augst, 2003, Reproducibility study of magnetic resonance image-based computational fluid dynamics prediction of carotid bifurcation flow, Ann. Biomed. Eng. 31, 142–151.

    Article  CAS  Google Scholar 

  • He, X., 1996, Pulsatile flow in the human left coronary artery bifurcation: Average conditions, J. Biomech. Eng. 118(1), 74–82.

    Article  CAS  Google Scholar 

  • Himburg, H. and D. Grzybowski, 2004, Spatial comparison between wall shear stress measures and porcine arterial endothelial permeability, Am. J. Physiol. Heart Circ. Physiol. 286, 1916–1922.

    Article  Google Scholar 

  • Johnston, B.M., P.R. Johnston, S. Corney, and D. Kilpatrick, 2004, Non-Newtonian blood flow in human right coronary arteries: steady state simulations, J. Biomech. 37(5), 709–720.

    Article  Google Scholar 

  • Kim, J.Y., K. Ro, and H.S. Ryou, H.S., 2011, Numerical study on blood flow characteristics in a arteriovenous graft with delivered dose during hemodialysis, Journal of Computational Fluids Engineering (in Korea), 16 (4), 84–91.

    Article  Google Scholar 

  • Krueger, U., J. Zanow, and H. Scholz, 2002, Computational fluid dynamics and vascular access. Artif. Organs 26(7), 571–575.

    Article  Google Scholar 

  • Ku, D., D. Giddens, and C. Zarins, 1985, Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress, Arterioscler. Thromb. Vasc. Biol. 5, 293–302.

    Article  CAS  Google Scholar 

  • Lei, M., J.P. Archie, and C. Kleinstreuer, 1997, Computational design of a bypass graft that minimizes wall shear stress gradients in the region of the distal anastomosis, J. Vasc. Surg. 25(4), 637–646.

    Article  CAS  Google Scholar 

  • Leverett, L.B., J.D. Hellums, C.P. Alfrey, and E.C. Lynch, E.C., 1972, Red blood cell damage by shear stress, Biophys.J. 12(3), 257–273.

    Article  CAS  Google Scholar 

  • Lumsden, A., W. Suggs, and D. Ku, 1996, Low shear stress promotes intimal hyperplasia thickening, J. Vasc. Invest. 2, 12–22.

    Google Scholar 

  • Malek, A. and S. Alper, S., 1999, Hemodynamic shear stress and its role in atherosclerosis, JAMA 282(21), 2035–2042.

    Article  CAS  Google Scholar 

  • McIntire, L.V. and R.R. Martin, 1981, Mechanical trauma induced PMN leucocyte dysfunction, The Rheology of Blood Vessels and Associated Tissues, Alphen aan den Rijn: Sijthoff and Noordhoff, 214–235.

    Google Scholar 

  • National Kidney Foundation, 1997, Clinical practice guidelines for vascular access.

    Google Scholar 

  • Nevaril, C., E. Lynch, and C. Alfrey Jr., 1968, Erythrocyte damage and destruction induced by shearing stress, J. Lab. Clin. Med. 71(5), 784–790.

    CAS  Google Scholar 

  • Niemann, A., S.A. Kock, J.V. Nygaard, E.T. Frund, S.E. Petersen, and J.M. Hasenkam, 2007, Assessment of hemodynamic conditions in a-v fistulas using CFD, Excerpt from th Proceedings of the COMSOL Users Conference.

    Google Scholar 

  • Papaioannou, T. and C. Stefanadis, 2005, Vascular wall shear stress: basic principles and methods, Hell. J. Cardiol. 46(1), 9–15.

    Google Scholar 

  • Roy-Chaudhury, P., B.S. Kelly, M.A. Miller, A. Reaves, J. Armstrong, N. Nanayakkara, and S.C. Heffelfinger, 2001, Venous neointimal hyperplasia in polytetrafluoroethylene dialysis grafts, Kidney Int. 59(6), 2325–2334.

    CAS  Google Scholar 

  • Soulis, J., O. Lampri, and D. Fytanidis, 2011, Relative residence time and oscillatory shear index of non-Newtonian flow models in aorta, 10th International Workshop on Biomedical Engineering, 1–4.

    Google Scholar 

  • Stehman-Breen, C.O., D.J. Sherrard, D. Gillen, and M. Caps, 2000, Determinants of type and timing of initial permanent hemodialysis vascular access, Kidney Int. 57(2), 639–645.

    Article  CAS  Google Scholar 

  • Tordoir, J., B. Canaud, P. Haage, K. Konner, A. Basci, D. Fouque, J. Kooman, A. Martin-Malo, L. Pedrini, F. Pizzarelli, J. Tattersall, M. Vennegoor, C. Wanner, P. Wee, and R. Vanholder, 2007, EBPG on vascular access, Nephrol. Dial. Transplant. 22(2), 88–117.

    Article  Google Scholar 

  • Tricht, I.V., D.D. Wachter, J. Tordoir, and P. Verdonck, 2005a, Hemodynamics and complications encountered with arteriovenous fistulas and grafts as vascular access for hemodialysis: a review, Ann. Biomed. Eng. 33(9), 1142–1157.

    Article  Google Scholar 

  • Tricht, I.V., D.D. Wachter, J. Tordoir, and P. Verdonck, 2006, Comparison of the hemodynamics in 6mm and 4–7 mm hemodialysis grafts by means of CFD, J. Biomech. 39(2), 226–236.

    Article  Google Scholar 

  • Tricht, I.V., D.D. Wachter, J. Tordoir, D. Vanhercke, and P. Verdonck, 2005b, Experimental analysis of the hemodynamics in punctured vascular access grafts, ASAIO J. 51(4), 352–359.

    Article  Google Scholar 

  • Tricht, I.V., D.D. Wachter, D. Vanhercke, J. Tordoir, and P. Verdonck, 2004, Assessment of stenosis in vascular access grafts, Artif. Organs 28(7), 617–622.

    Article  Google Scholar 

  • Unnikrishnan, S., T.N. Huynh, B.C. Brott, Y. Ito, C.H. Cheng, A.M. Shih, M. Allon, and A.S. Anayiotos, 2005, Turbulent flow evaluation of the venous needle during hemodialysis, J. Biomed. Eng. 127(7), 1141–1146.

    Google Scholar 

  • Van Canneyt, K., T. Pourchez, S. Eloot, C. Guillame, A. Bonnet, P. Segers, and P. Verdonck, 2010, Hemodynamic impact of anastomosis size and angle in side-to-end arteriovenous fistulae: a computer analysis, J. Vasc. Access 11(1), 52–58.

    Google Scholar 

  • Woods, J., M.N. Turenne, R.L. Strawderman, E.W. Young, R.A. Hirth, F.K. Port, and P.J. Held, 1997, Vascular access survival among incident hemodialysis patients in the United States, Am. J. Kidney Dis. 30(1), 50–57.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Sun Ryou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryou, H.S., Kim, S. & Ro, K. A numerical study of the effect of catheter angle on the blood flow characteristics in a graft during hemodialysis. Korea-Aust. Rheol. J. 25, 19–27 (2013). https://doi.org/10.1007/s13367-013-0003-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-013-0003-z

Keywords

Navigation