Skip to main content
Log in

On-line observation of hydrogels during swelling and LCST-induced changes

  • Articles
  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

A new technique for the online observation of rheological data of hydrogels during experiments involving significant volume changes is proposed. In order to accommodate for large volume changes, the gap has to be force controlled and continuously adjusted to the current sample height. Furthermore, the force control also has to ensure the adhesion of the sample to the geometry. For smaller volume changes, it is also possible to employ experiments with constant gap. Due to the volume change, the sample is not clearly defined with respect to the open surfaces in a parallel plate geometry, which leads to too high values, which, however, can be compensated for properly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bouklas, N. and R. Huang, 2012, Swelling kinetics of polymer gels: comparison of linear and nonlinear theories, Soft Matter in press.

  • Breedveld, V., A.P. Nowak, J. Sato, T.J. Deming, and D.J. Pine, 2004, Rheology of block copolypeptide solutions: Hydrogels with tunable properties, Macromolecules 37(10), 3943–3953.

    Article  CAS  Google Scholar 

  • Bromberg, L., 1998, Scaling of rheological properties of hydrogels from associating polymers, Macromolecules 31(18), 6148–6156.

    Article  CAS  Google Scholar 

  • Bryant, S.J., T.T. Chowdhury, D.A. Lee, D.L. Bader, and K.S. Anseth, 2004, Crosslinking density influences chondrocyte metabolism in dynamically loaded photocrosslinked poly(ethylene glycol) hydrogels, Annals of Biomedical Engineering 32(3), 407–417.

    Article  Google Scholar 

  • Chambon, F. and H.H. Winter, 1987, Linear Viscoelasticity at the Gel Point of a Cross-Linking Pdms with Imbalanced Stoichiometry, Journal of Rheology 31(8), 683–697.

    Article  CAS  Google Scholar 

  • Du, H., R. Wickramasinghe, and X. Qian, 2010, Effects of salt on the lower critical solution temperature of poly (N-isopropylacrylamide), Journal of Physical Chemisty B 114(49), 16594–604.

    Article  CAS  Google Scholar 

  • Ferry, J.D., 1980, Viscoelastic Properties of Polymers, New York, John Wiley and Sons.

    Google Scholar 

  • Friedrich, T., B. Tieke, F.J. Stadler, C. Bailly, T. Eckert, and W. Richtering, 2010a, Thermoresponsive Copolymer Hydrogels on the Basis ofN-Isopropylacrylamide and a Non-Ionic Surfactant Monomer: Swelling Behavior, Transparency and Rheological Properties, Macromolecules 43(23), 9964–9971.

    Article  CAS  Google Scholar 

  • Friedrich, T., B. Tieke, M. Meyer, W. Pyckhout-Hintzen, and V. Pipich, 2010b, Thermoresponsive Copolymer Hydrogels Based on N-Isopropylacrylamide and Cationic Surfactant Monomers Prepared from Micellar Solution and Microemulsion in a One-Step Reaction, Journal of Physical Chemistry B 114(17), 5666–5677.

    Article  CAS  Google Scholar 

  • Friedrich, T., B. Tieke, F.J. Stadler, and C. Bailly, 2011a, Copolymer Hydrogels of Acrylic Acid and a Nonionic Surfmer: pHInduced Switching of Transparency and Volume and Improved Mechanical Stability, Langmuir 27(6), 2997–3005.

    Article  CAS  Google Scholar 

  • Friedrich, T., B. Tieke, F.J. Stadler, and C. Bailly, 2011b, Improvement of elasticity and strength of poly(N-isopropylacrylamide) hydrogels upon copolymerization with cationic surfmers, Soft Matter 7(14), 6590–6597.

    Article  CAS  Google Scholar 

  • Guillet, P., C. Mugemana, F.J. Stadler, U.S. Schubert, C-A. Fustin, C. Bailly, and J-F. Gohy, 2009, Connecting micelles by metallo-supramolecular interactions: towards stimuli responsive hierarchical materials, Soft Matter 5(18), 3409–3411.

    Article  CAS  Google Scholar 

  • Haraguchi, K., T. Takehisa, and S. Fan, 2002, Effects of Clay Content on the Properties of Nanocomposite Hydrogels Composed of Poly(N-isopropylacrylamide) and Clay, Macromolecules 35(27), 10162–10171.

    Article  CAS  Google Scholar 

  • Hashmi, S., A. GhavamiNejad, F. Obiweluozor, M. Vatankhah-Varnoosfaderani, and F.J. Stadler, 2012, Supramolecular Interaction Controlled Diffusion Mechanism and Improved Mechanical Behavior of Hybrid Hydrogel Systems of Zwitterions and CNT, submitted.

  • He, L.H., D.E. Fullenkamp, J.G. Rivera, and P.B. Messersmith, 2011, pH responsive self-healing hydrogels formed by boronate-catechol complexation, Chemical Communications 47(26), 7497–7499.

    Article  CAS  Google Scholar 

  • Huglin, M.B., and J.M. Rego, 1992, Thermodynamic Properties of Copolymeric Hydrogels Based on 2-Hydroxyethyl Methacrylate and a Zwitterionic Methacrylate, Colloid and Polymer Science 270(3), 234–242.

    Article  Google Scholar 

  • Itagaki, H., T. Kurokawa, H. Furukawa, T. Nakajima, Y. Katsumoto, and J.P. Gong, 2010, Water-Induced Brittle-Ductile Transition of Double Network Hydrogels, Macromolecules 43(22), 9495–9500.

    Article  CAS  Google Scholar 

  • Jiang, J., R. Malal, C. Li, M.Y. Lin, R.H. Colby, D. Gersappe, M.H. Rafailovich, J.C. Sokolov, and D. Cohn, 2008, Rheology of Thermoreversible Hydrogels from Multiblock Associating Copolymers, Macromolecules 41(10), 3646–3652.

    Article  CAS  Google Scholar 

  • Kagata, G., J.P. Gong, and Y. Osada, 2002, Friction of gels. 6. Effects of sliding velocity and viscoelastic responses of the network, Journal of Physical Chemistry B 106(18), 4596–4601.

    Article  CAS  Google Scholar 

  • Klee, D., and H. Hocker, 1999, Polymers for biomedical applications: Improvement of the interface compatibility, Biomedical Applications: Polymer Blends 149, 1–57.

    Article  CAS  Google Scholar 

  • Na Y-H, T. Kurokawa, Y. Katsuyama, H. Tsukeshiba, J.P. Gong, Y. Osada, S. Okabe, T. Karino, and M. Shibayama M, 2004, Structural Characteristics of Double Network Gels with Extremely High Mechanical Strength, Macromolecules 37(14), 5370–5374.

    Article  CAS  Google Scholar 

  • Pal, A. and J. Dey, 2011, Rheology and thermal stability of pHdependent hydrogels of N-acyl-l-carnosine amphiphiles: effect of the alkoxy tail length, Soft Matter 7(21), 10369–10376.

    Article  CAS  Google Scholar 

  • Senff, H. and W. Richtering, 1999, Temperature sensitive microgel suspensions: Colloidal phase behavior and rheology of soft spheres, Journal of Chemical Physics 111(4), 1705–1711.

    Article  CAS  Google Scholar 

  • Stadler, F.J. and H. Münstedt, 2008, Numerical description of shear viscosity functions of long-chain branched metallocenecatalyzed polyethylenes, Journal of non-Newtonian Fluid Mechanics 151(1–3), 129–135.

    Article  CAS  Google Scholar 

  • Winter, H.H. and F. Chambon, 1986, Analysis of Linear Viscoelasticity of a Cross-Linking Polymer at the Gel Point, Journal of Rheology 30(2), 367–382.

    Article  CAS  Google Scholar 

  • Zhang, J., C.R. Daubert, and E.A. Foegeding, 2005, Characterization of polyacrylamide gels as an elastic model for food gels, Rheologica Acta 44(6), 622–630.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian J. Stadler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hashmi, S., Obiweluozor, F., GhavamiNejad, A. et al. On-line observation of hydrogels during swelling and LCST-induced changes. Korea-Aust. Rheol. J. 24, 191–198 (2012). https://doi.org/10.1007/s13367-012-0023-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-012-0023-0

Keywords

Navigation