Skip to main content
Log in

Field-responsive smart composite particle suspension: materials and rheology

  • Review
  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

Both electrorheological (ER) and magnetorheological (MR) fluids are known to be smart materials which can be rapidly and reversibly transformed from a fluid-like to a solid-like state within milliseconds by showing dramatic and tunable changes in their rheological properties under external electrical or magnetic field strength, respectively. Here, among various smart composite particles studied, recently developed core-shell structured polystyrene/graphene oxide composite based ER material as well as the dual-step functionally coated carbonyl iron composite based MR material are briefly reviewed along with their rheological characteristics under external fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnard, A. S. and I. K. Snook, 2010, Size- and shape-dependence of the graphene to graphane transformation in the absence of hydrogen, J. Mater. Chem. 20, 10459.

    Article  CAS  Google Scholar 

  • Bica, I., 2011, Magnetoresistor sensor with magnetorheological elastomers, J. Ind. Eng. Chem. 17, 83.

    Article  CAS  Google Scholar 

  • Cai, D. and M. Song, 2010, Recent advance in functionalized graphene/polymer nanocomposites, J. Mater. Chem. 20, 7906.

    Article  CAS  Google Scholar 

  • Cheng, H. B., J. M. Wang, Q. J. Zhang, and N. M. Wereley, 2009, Preparation of composite magnetic particles and aqueous magnetorheological fluids, Smart Mater. Struct. 18, 085009.

    Article  Google Scholar 

  • Cheng, Q., V. Pavlinek, Y. He, C. Li, and P. Saha, 2009, Electrorheological characteristics of polyaniline/titanate composite nanotube suspensions, Colloid Polym. Sci. 287, 435.

    Article  CAS  Google Scholar 

  • Cho, M. S., Y. H. Cho, H. J. Choi, and M. S. Jhon, 2003, Synthesis and electrorheological characteristics of polyanilinecoated poly (methyl methacrylate) microsphere: Size effect, Langmuir 19, 5875.

    Article  CAS  Google Scholar 

  • Cho M. S., H. J. Choi, and M. S. Jhon, 2005, Shear stress analysis of a semiconducting polymer based electrorheological fluid system, Polymer 46, 11484.

    Article  CAS  Google Scholar 

  • Choi H. J., M. S. Cho, J. W. Kim, C. A. Kim, and M. S. Jhon, 2001, A yield stress scaling function for electrorheological fluids, Appl. Phys. Lett. 78, 3806.

    Article  CAS  Google Scholar 

  • Choi, H. J. and M. S. Jhon, 2009, Electrorheology of polymers and nanocomposites, Soft Matter 5, 1562.

    Article  CAS  Google Scholar 

  • Fang, F. F., H. J. Choi, and Y. Seo, 2010a, Sequential coating of magnetic carbonyliron particles with polystyrene and multiwalled carbon nanotubes and its effect on their magnetorheology. ACS Appl. Mater. Inter. 2, 54.

    Article  CAS  Google Scholar 

  • Fang, F. F., Y. D. Liu, H. J. Choi, and Y. Seo, 2011, Core-shell structured carbonyl iron microspheres prepared via dual-step functionality coatings and their magnetorheological response. ACS Appl. Mater. Inter. 3, 3487.

    Article  CAS  Google Scholar 

  • Fang, M., L. Long, W. Zhao, L. Wang, and G. Chen, 2010b, pHresponsive chitosan-mediated graphene dispersions, Langmuir 26, 16771.

    Article  CAS  Google Scholar 

  • Hiamtup, P., A. Sirivat, and A. M. Jamieson, 2010, Strain-hardening in the oscillatory shear deformation of a dedoped polyaniline electrorheological fluid, J. Mater. Sci. 45, 1972.

    Article  CAS  Google Scholar 

  • Hong, J. Y. and J. Jang, 2012, Highly stable, concentrated dispersions of graphene oxide sheets and their electro-responsive characteristics, Soft Matter 8, 3348.

    Article  Google Scholar 

  • Hummers, W. S. and R. E. Offeman, 1958, Preparation of graphitic oxide, J. Am. Chem. Soc. 80, 1339.

    Article  CAS  Google Scholar 

  • Huo, L., J. R. Li, and F. H. Liao, 2011, The comparison between carboxyl, amido and hydroxyl group in influencing electrorheological performance. Korea-Aust. Rheol. J. 23, 17.

    Article  Google Scholar 

  • Jang, I. B., H. B. Kim, J. Y. Lee, J. L. You, H. J. Choi, and M. S. Jhon, 2005, Role of organic coating on carbonyl iron suspended particles in magnetorheological fluids, J. Appl. Phys. 97, 10Q912.

    Article  Google Scholar 

  • Kampouris, D. K. and C. E. Banks, 2010, Exploring the physicoelectrochemical properties of graphene, Chem. Comm., 46, 8986.

    Article  CAS  Google Scholar 

  • Kim, Y. D. and J. C. Jung, 2010, Effect of aliphatic spacer length on the electrorheological properties of side-chain liquid crystalline polymer-silica composite suspensions, Macromol. Research 18, 1203.

    Article  CAS  Google Scholar 

  • Klingerberg, D. J., F. van Swol, and C. F. Zukoski, 1991, The small shear rate response of electrorheological suspensions. II. Extension beyond the point-dipole limit, J. Chem. Phys. 94, 6170.

    Article  Google Scholar 

  • Kee, D. D. and G. Turcotte, 1980, Viscosity of biomaterials, Chem. Eng. Comm. 6, 273.

    Article  Google Scholar 

  • Lee, I. S., M. S. Cho, and H. J. Choi, 2005, Preparation of polyaniline coated poly(methyl methacrylate) microsphere by graft polymerization and its electrorheology. Polymer 46, 1317.

    Article  CAS  Google Scholar 

  • Li, W. H. and X. Z. Zhang, 2008, The effect of friction on magnetorheological fluids, Korea-Aust. Rheol. J. 20, 45.

    CAS  Google Scholar 

  • Lim, S. T., H. J. Choi, and M. S. Jhon, 2005, Magnetorheological characterization of carbonyl iron-organoclay suspensions, IEEE Trans. Magn. 41, 3745.

    Article  CAS  Google Scholar 

  • Liu, Y. D., F. F. Fang, and H. J. Choi, 2010, Core-shell structured semiconducting PMMA/polyaniline snowman-like anisotropic microparticles and their electrorheology, Langmuir 26, 12849.

    Article  CAS  Google Scholar 

  • Liu, Y.D., H.J. Choi, and S.B. Choi, 2012, Controllable fabrication of silica encapsulated soft magnetic microspheres with enhanced oxidation-resistance and their rheology under magnetic field, Colloid Surf. A-Physicochem. Eng. Asp. 403, 133.

    Article  CAS  Google Scholar 

  • Ngatu, G.T. and N.M. Wereley, 2007, Viscometric and sedimentation characterization of bidisperse magnetorheological fluids, IEEE Trans. Magn. 43, 2474.

    Article  Google Scholar 

  • Niu, X., M. Zhang, J. Wu, W. Wen, and P. Sheng, 2009, Generation and manipulation of “smart” droplets, Soft Matter 5, 576.

    Article  CAS  Google Scholar 

  • Orihara, H., Y. Nishimoto, K. Aida, and Y. H. Na, 2011, Threedimensional observation of an immiscible polymer blend subjected to a step electric field under shear flow, Phys. Rev. E 83, 026302.

    Article  Google Scholar 

  • Papanastasiou, T. C., 1987, Flows of materials with yield, J. Rheol. 31, 385.

    Article  CAS  Google Scholar 

  • Sedlacik, M., V. Pavlinek, P. Saha, P. Svrcinova, P. Filip, and J. Stejskal, 2010, Rheological properties of magnetorheological suspensions based on core-shell structured polyaniline-coated carbonyl iron particles, Smart Mater. Struct. 19, 115008.

    Article  Google Scholar 

  • Seo, Y., 2011, A new yield stress scaling function for electrorheological fluids, J. Non-Newtonian Fluid Mech. 166, 241.

    Article  CAS  Google Scholar 

  • Seo, Y. P., H. J. Choi, and Y. Seo, 2011, Analysis of the flow behavior of electrorheological fluids with the aligned structure reformation, Polymer 52, 5695.

    Article  CAS  Google Scholar 

  • Seo, Y. P. and Y. Seo, 2012, Modeling and analysis of electrorheological suspensions in shear flow, Langmuir 28, 3077.

    Article  CAS  Google Scholar 

  • Stankovich, S., D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, 2007, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon 45, 1558.

    Article  CAS  Google Scholar 

  • Tang, X., X. Zhang, R. Tao, and Y. Rong, 2000, Structureenhanced yield stress of magnetorheological fluids, J. Appl. Phys. 87, 2634.

    Article  CAS  Google Scholar 

  • Tian, Y., Y. Meng, and S. Wen, 2001, Electrorheology of a zeolite/silicone oil suspension under dc fields, J. Appl. Phys. 90, 493.

    Article  CAS  Google Scholar 

  • Tian, Y., J. Jiang, Y. Meng, and S. Wen, 2010, A shear thickening phenomenon in magnetic field controlled-dipolar suspensions, Appl. Phys. Lett. 97, 151904.

    Article  Google Scholar 

  • Wang, B., M. Zhou, Z. Rozynek, and J. O. Fossum, 2009, Electrorheological properties of organically modified nanolayered laponite: influence of intercalation, adsorption and wettability, J. Mater. Chem. 19, 1816.

    Article  CAS  Google Scholar 

  • Wu, Y. H., T. Yu, and Z. X. Shen, 2010, Two-dimensional carbon nanostructures: Fundamental properties, synthesis, characterization, and potential applications, J. Appl. Phys. 108, 071301.

    Article  Google Scholar 

  • Yi, H., H. Song, and X. Chen, 2007, Carbon nanotube capsules self-assembled by W/O emulsion technique, Langmuir 23, 3199.

    Article  CAS  Google Scholar 

  • Yin, J., X. Zhao, L. Xiang, X. Xia, and Z. Zhang, 2009, Enhanced electrorheology of suspensions containing seaurchin-like hierarchical Cr-doped titania particles, Soft Matter 5, 4687.

    Article  CAS  Google Scholar 

  • Yin, J., X. Xia, X. Wang, and X. Zhao, 2011, The electrorheological effect and dielectric properties of suspensions containing polyaniline@titania nanocable-like particles, Soft Matter 7, 10978.

    Article  CAS  Google Scholar 

  • Zhang, X., W. Li, and X. L. Gong, 2008, Study on magnetorheological shear thickening fluid, Smart Mater. Struct. 17, 015051.

    Article  Google Scholar 

  • Zhang, W. L., B. J. Park, and H. J. Choi, 2010, Colloidal graphene oxide/polyaniline nanocomposite and its electrorheology. Chem. Comm. 46, 5596.

    Article  CAS  Google Scholar 

  • Zhang, W. L., Y. D. Liu, and H. J. Choi, 2011, Graphene oxide coated core-shell structured polystyrene microspheres and their electrorheological characteristics under applied electric field. J. Mater. Chem. 21, 6916.

    Article  CAS  Google Scholar 

  • Zhang, W. L., Y. D. Liu, and H. J. Choi, 2012a, Fabrication of semiconducting graphene oxide/polyaniline composite particles and their electrorheological response under an applied electric field, Carbon 50, 290.

    Article  Google Scholar 

  • Zhang, W. L., Y. D. Liu, H. J. Choi, and S. G. Kim, 2012b, Electrorheology of graphene oxide, ACS Appl. Mater. Inter. 4, 2267.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyoung Jin Choi.

Additional information

This paper is based on an invited lecture presented by the corresponding author at the 12th International Symposium on Applied Rheology (ISAR), held May 17, 2012, Seoul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, W.L., Liu, Y.D. & Choi, H.J. Field-responsive smart composite particle suspension: materials and rheology. Korea-Aust. Rheol. J. 24, 147–153 (2012). https://doi.org/10.1007/s13367-012-0018-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-012-0018-x

Keywords

Navigation