Find out how to access preview-only content
Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry
, Volume 54, Issue 2, pp 701-708
First online:
Convolution filters for polygons and the Petr–Douglas–Neumann theorem
- Grégoire NicollierAffiliated withUniversity of Applied Sciences of Western Switzerland Email author
Rent the article at a discount
Rent now* Final gross prices may vary according to local VAT.
Get AccessAbstract
We use the discrete Fourier transformation of planar polygons, convolution filters, and a shape function to give a very simple and enlightening description of circulant polygon transformations and their iterates. We consider in particular Napoleon’s and the Petr–Douglas–Neumann theorem.
Keywords
Petr–Douglas–Neumann theorem Napoleon’s theorem Convolution filter for polygons Shape function Discrete Fourier transformationMathematics Subject Classification (2000)
51N20 51M04 37E99- Title
- Convolution filters for polygons and the Petr–Douglas–Neumann theorem
- Journal
-
Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry
Volume 54, Issue 2 , pp 701-708
- Cover Date
- 2013-10
- DOI
- 10.1007/s13366-013-0143-9
- Print ISSN
- 0138-4821
- Online ISSN
- 2191-0383
- Publisher
- Springer Berlin Heidelberg
- Additional Links
- Topics
- Keywords
-
- Petr–Douglas–Neumann theorem
- Napoleon’s theorem
- Convolution filter for polygons
- Shape function
- Discrete Fourier transformation
- 51N20
- 51M04
- 37E99
- Authors
- Author Affiliations
-
- 1. University of Applied Sciences of Western Switzerland, Route du Rawyl 47, 1950, Sion, Switzerland
