Skip to main content

Advertisement

Log in

HIV-1 transgenic rats display an increase in [3H]dopamine uptake in the prefrontal cortex and striatum

  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

HIV viral proteins within the central nervous system are associated with the development of neurocognitive impairments in HIV-infected individuals. Dopamine transporter (DAT)-mediated dopamine transport is critical for normal dopamine homeostasis. Abnormal dopaminergic transmission has been implicated as a risk determinant of HIV-induced neurocognitive impairments. Our published work has demonstrated that transactivator of transcription (Tat)-induced inhibition of DAT is mediated by allosteric binding site(s) on DAT, not the interaction with the dopamine uptake site. The present study investigated whether impaired DAT function induced by Tat exposure in vitro can be documented in HIV-1 transgenic (HIV-1Tg) rats. We assessed kinetic analyses of [3H]dopamine uptake into prefrontal and striatal synaptosomes of HIV-1Tg and Fisher 344 rats. Compared with Fisher 344 rats, the capacity of dopamine transport in the prefrontal cortex (PFC) and striatum of HIV-1Tg rats was increased by 34 and 32 %, respectively. Assessment of surface biotinylation indicated that DAT expression in the plasma membrane was reduced in PFC and enhanced in striatum, respectively, of HIV-1Tg rats. While the maximal binding sites (B max) of [3H]WIN 35,428 was decreased in striatum of HIV-1Tg rats, an increase in DAT turnover proportion was found, relative to Fisher 344 rats. Together, these findings suggest that neuroadaptive changes in DAT function are evidenced in the HIV-1Tg rats, perhaps compensating for viral-protein-induced abnormal dopaminergic transmission. Thus, our study provides novel insights into understanding mechanism underlying neurocognitive impairment evident in neuroAIDS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AIDS:

Acquired immunodeficiency syndrome

B max :

Maximal number of [3H]ligand binding sites

DA:

Dopamine

DAT:

Dopamine transporter

EDTA:

Ethylenediamine tetraacetic acid

EDC:

1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide

GBR 12909:

1-[2-(bis[4-fluorophenyl]methoxy)ethyl]-4-[3-phenylpropyl]piperazine

HBS-TE:

HEPES-buffered saline with Tween 20 and EDTA

hDAT:

Human dopamine transporter

HIV:

Human immunodeficiency virus

HAD:

HIV-associated dementia

K d :

Equilibrium dissociation constant

K m :

Michaelis-Menten constant

Tat:

Transactivator of transcription

Tween 20:

Polyethylene glycol sorbitan monolaurate

V max :

Maximal velocity

WIN 35,428:

2β-Carbomethoxy-3-β-(4-fluorophenyl)tropane

MD:

Molecular dynamics

References

  • Acharjee S, Branton WG, Vivithanaporn P, Maingat F, Paul AM, Dickie P, Baker GB, Power C (2014) HIV-1 Nef expression in microglia disrupts dopaminergic and immune functions with associated mania-like behaviors. Brain Behav Immun 40:74–84

    Article  CAS  PubMed  Google Scholar 

  • Berger JR, Arendt G (2000) HIV dementia: the role of the basal ganglia and dopaminergic systems. J Psychopharmacol 14:214–21

    Article  CAS  PubMed  Google Scholar 

  • Berridge KC (2007) The debate over dopamine’s role in reward: the case for incentive salience. Psychopharmacology (Berl) 191:391–431

    Article  CAS  Google Scholar 

  • Brack-Werner R (1999) Astrocytes: HIV cellular reservoirs and important participants in neuropathogenesis. AIDS 13:1–22

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–54

    Article  CAS  PubMed  Google Scholar 

  • Buch S, Yao H, Guo M, Mori T, Su TP, Wang J (2011) Cocaine and HIV-1 interplay: molecular mechanisms of action and addiction. J Neuroimmune Pharmacol 6:503–15

    Article  PubMed  PubMed Central  Google Scholar 

  • Buckner CM, Luers AJ, Calderon TM, Eugenin EA, Berman JW (2006) Neuroimmunity and the blood-brain barrier: molecular regulation of leukocyte transmigration and viral entry into the nervous system with a focus on neuroAIDS. J Neuroimmune Pharmacol 1:160–81

    Article  PubMed  PubMed Central  Google Scholar 

  • Carey AN, Sypek EI, Singh HD, Kaufman MJ, McLaughlin JP (2012) Expression of HIV-Tat protein is associated with learning and memory deficits in the mouse. Behav Brain Res 229:48–56

    Article  CAS  PubMed  Google Scholar 

  • Case DA, Darden TA, Cheatham Iii TE, Simmerling CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Roberts B, Hayik S, Roitberg A, Seabra G, Swails J, Goetz AW, Kolossváry I, Wong KF, Paesani F, Vanicek J, Wolf RM, Liu J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Cai Q, Ye X, Wang J, Hsieh MJ, Cui G, Roe DR, Mathews DH, Seetin MG, Salomon-Ferrer R, Sagui C, Babin V, Luchko T, Gusarov S, Kovalenko A, Kollman PA (2012) AMBER 12. University of California, San Francisco

    Google Scholar 

  • Chang L, Wang GJ, Volkow ND, Ernst T, Telang F, Logan J, Fowler JS (2008) Decreased brain dopamine transporters are related to cognitive deficits in HIV patients with or without cocaine abuse. Neuroimage 42:869–78

    Article  PubMed  PubMed Central  Google Scholar 

  • Coulehan K, Byrd D, Arentoft A, Monzones J, Fuentes A, Fraser F, Rosario A, Morgello S, Mindt MR (2014) The role of decision-making ability in HIV/AIDS: impact on prospective memory. J Clin Exp Neuropsychol 36:730–41

    Article  PubMed  Google Scholar 

  • Everitt BJ, Robbins TW (2005) Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci 8:1481–9

    Article  CAS  PubMed  Google Scholar 

  • Ferris MJ, Frederick-Duus D, Fadel J, Mactutus CF, Booze RM (2009) In vivo microdialysis in awake, freely moving rats demonstrates HIV-1 Tat-induced alterations in dopamine transmission. Synapse 63:181–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferris MJ, Frederick-Duus D, Fadel J, Mactutus CF, Booze RM (2010) Hyperdopaminergic tone in HIV-1 protein treated rats and cocaine sensitization. J Neurochem 115:885–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiala M, Gan XH, Zhang L, House SD, Newton T, Graves MC, Shapshak P, Stins M, Kim KS, Witte M, Chang SL (1998) Cocaine enhances monocyte migration across the blood-brain barrier. Cocaine’s connection to AIDS dementia and vasculitis? Adv Exp Med Biol 437:199–205

    Article  CAS  PubMed  Google Scholar 

  • Forrest LR, Tavoulari S, Zhang YW, Rudnick G, Honig B (2007) Identification of a chloride ion binding site in Na+/Cl-dependent transporters. Proc Natl Acad Sci U S A 104:12761–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frankel AD, Young JA (1998) HIV-1: fifteen proteins and an RNA. Annu Rev Biochem 67:1–25

    Article  CAS  PubMed  Google Scholar 

  • Gannon P, Khan MZ, Kolson DL (2011) Current understanding of HIV-associated neurocognitive disorders pathogenesis. Curr Opin Neurol 24:275–83

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaskill PJ, Calderon TM, Luers AJ, Eugenin EA, Javitch JA, Berman JW (2009) Human immunodeficiency virus (HIV) infection of human macrophages is increased by dopamine: a bridge between HIV-associated neurologic disorders and drug abuse. Am J Pathol 175:1148–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gelman BB, Spencer JA, Holzer CE 3rd, Soukup VM (2006) Abnormal striatal dopaminergic synapses in National NeuroAIDS Tissue Consortium subjects with HIV encephalitis. J Neuroimmune Pharmacol 1:410–20

    Article  PubMed  Google Scholar 

  • Harrod SB, Mactutus CF, Fitting S, Hasselrot U, Booze RM (2008) Intra-accumbal Tat1-72 alters acute and sensitized responses to cocaine. Pharmacol Biochem Behav 90:723–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heaton RK, Clifford DB, Franklin DR Jr, Woods SP, Ake C, Vaida F, Ellis RJ, Letendre SL, Marcotte TD, Atkinson JH, Rivera-Mindt M, Vigil OR, Taylor MJ, Collier AC, Marra CM, Gelman BB, McArthur JC, Morgello S, Simpson DM, McCutchan JA, Abramson I, Gamst A, Fennema-Notestine C, Jernigan TL, Wong J, Grant I, Group C (2010) HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER study. Neurology 75:2087–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsieh PC, Yeh TL, Lee IH, Huang HC, Chen PS, Yang YK, Chiu NT, Lu RB, Liao MH (2010) Correlation between errors on the Wisconsin Card Sorting Test and the availability of striatal dopamine transporters in healthy volunteers. J Psychiatry Neurosci 35:90–4

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu S, Sheng WS, Rock RB (2013) CB2 receptor agonists protect human dopaminergic neurons against damage from HIV-1 gp120. PLoS One 8:e77577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X, Gu HH, Zhan CG (2009) Mechanism for cocaine blocking the transport of dopamine: insights from molecular modeling and dynamics simulations. J Phys Chem B 113:15057–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X, Zhan CG (2007) How dopamine transporter interacts with dopamine: insights from molecular modeling and simulation. Biophys J 93:3627–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hudson L, Liu J, Nath A, Jones M, Raghavan R, Narayan O, Male D, Everall I (2000) Detection of the human immunodeficiency virus regulatory protein tat in CNS tissues. J Neurovirol 6:145–55

    Article  CAS  PubMed  Google Scholar 

  • Johnston JB, Zhang K, Silva C, Shalinsky DR, Conant K, Ni W, Corbett D, Yong VW, Power C (2001) HIV-1 Tat neurotoxicity is prevented by matrix metalloproteinase inhibitors. Ann Neurol 49:230–41

    Article  CAS  PubMed  Google Scholar 

  • Kim BO, Liu Y, Ruan Y, Xu ZC, Schantz L, He JJ (2003) Neuropathologies in transgenic mice expressing human immunodeficiency virus type 1 Tat protein under the regulation of the astrocyte-specific glial fibrillary acidic protein promoter and doxycycline. Am J Pathol 162:1693–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimmel HL, Joyce AR, Carroll FI, Kuhar MJ (2001) Dopamine D1 and D2 receptors influence dopamine transporter synthesis and degradation in the rat. J Pharmacol Exp Ther 298:129–40

    CAS  PubMed  Google Scholar 

  • Koutsilieri E, Sopper S, Scheller C, ter Meulen V, Riederer P (2002) Involvement of dopamine in the progression of AIDS Dementia Complex. J Neural Transm 109:399–410

    Article  CAS  PubMed  Google Scholar 

  • Kulich SM, Chu CT (2001) Sustained extracellular signal-regulated kinase activation by 6-hydroxydopamine: implications for Parkinson’s disease. J Neurochem 77:1058–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar AM, Fernandez JB, Singer EJ, Commins D, Waldrop-Valverde D, Ownby RL, Kumar M (2009) Human immunodeficiency virus type 1 in the central nervous system leads to decreased dopamine in different regions of postmortem human brains. J Neurovirol 15:257–74

    Article  CAS  PubMed  Google Scholar 

  • Larrat EP, Zierler S (1993) Entangled epidemics: cocaine use and HIV disease. J Psychoactive Drugs 25:207–21

    Article  CAS  PubMed  Google Scholar 

  • Li W, Li G, Steiner J, Nath A (2009) Role of Tat protein in HIV neuropathogenesis. Neurotox Res 16:205–20

    Article  CAS  PubMed  Google Scholar 

  • Lin Z, Itokawa M, Uhl GR (2000) Dopamine transporter proline mutations influence dopamine uptake, cocaine analog recognition, and expression. FASEB J 14:715–28

    CAS  PubMed  Google Scholar 

  • Lin Z, Uhl GR (2003) Human dopamine transporter gene variation: effects of protein coding variants V55A and V382A on expression and uptake activities. Pharmacogenomics J 3:159–68

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Chang L, Vigorito M, Kass M, Li H, Chang SL (2009) Methamphetamine-induced behavioral sensitization is enhanced in the HIV-1 transgenic rat. J Neuroimmune Pharmacol 4:309–16

    Article  PubMed  Google Scholar 

  • McIntosh S, Sexton T, Pattison LP, Childers SR, Hemby SE (2015) Increased sensitivity to cocaine self-administration in HIV-1 transgenic rats is associated with changes in striatal dopamine transporter binding. J Neuroimmune Pharmacol 10:493–505

    Article  PubMed  Google Scholar 

  • Midde NM, Gomez AM, Harrod SB, Zhu J (2011) Genetically expressed HIV-1 viral proteins attenuate nicotine-induced behavioral sensitization and alter mesocorticolimbic ERK and CREB signaling in rats. Pharmacol Biochem Behav 98:587–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Midde NM, Gomez AM, Zhu J (2012) HIV-1 Tat protein decreases dopamine transporter cell surface expression and vesicular monoamine transporter-2 function in rat striatal synaptosomes. J Neuroimmune Pharmacol 7:629–39

    Article  PubMed  PubMed Central  Google Scholar 

  • Midde NM, Huang X, Gomez AM, Booze RM, Zhan CG, Zhu J (2013) Mutation of tyrosine 470 of human dopamine transporter is critical for HIV-1 Tat-induced inhibition of dopamine transport and transporter conformational transitions. J Neuroimmune Pharmacol 8:975–87

    Article  PubMed  PubMed Central  Google Scholar 

  • Midde NM, Yuan Y, Quizon PM, Sun WL, Huang X, Zhan CG, Zhu J (2015) Mutations at tyrosine 88, lysine 92 and tyrosine 470 of human dopamine transporter result in an attenuation of HIV-1 Tat-induced inhibition of dopamine transport. J Neuroimmune Pharmacol 10:122–35

    Article  PubMed  PubMed Central  Google Scholar 

  • Middleton LS, Apparsundaram S, King-Pospisil KA, Dwoskin LP (2007) Nicotine increases dopamine transporter function in rat striatum through a trafficking-independent mechanism. Eur J Pharmacol 554:128–36

    Article  CAS  PubMed  Google Scholar 

  • Mothobi NZ, Brew BJ (2012) Neurocognitive dysfunction in the highly active antiretroviral therapy era. Curr Opin Infect Dis 25:4–9

    Article  CAS  PubMed  Google Scholar 

  • Mozley LH, Gur RC, Mozley PD, Gur RE (2001) Striatal dopamine transporters and cognitive functioning in healthy men and women. Am J Psychiatry 158:1492–9

    Article  CAS  PubMed  Google Scholar 

  • Nath A, Clements JE (2011) Eradication of HIV from the brain: reasons for pause. AIDS 25:577–80

    Article  PubMed  PubMed Central  Google Scholar 

  • Nath A, Jankovic J, Pettigrew LC (1987) Movement disorders and AIDS. Neurology 37:37–41

    Article  CAS  PubMed  Google Scholar 

  • Norman LR, Basso M, Kumar A, Malow R (2009) Neuropsychological consequences of HIV and substance abuse: a literature review and implications for treatment and future research. Curr Drug Abuse Rev 2:143–56

    Article  CAS  PubMed  Google Scholar 

  • Pariser JJ, Partilla JS, Dersch CM, Ananthan S, Rothman RB (2008) Studies of the biogenic amine transporters. 12. Identification of novel partial inhibitors of amphetamine-induced dopamine release. J Pharmacol Exp Ther 326:286–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng J, Vigorito M, Liu X, Zhou D, Wu X, Chang SL (2010) The HIV-1 transgenic rat as a model for HIV-1 infected individuals on HAART. J Neuroimmunol 218:94–101

    Article  CAS  PubMed  Google Scholar 

  • Penmatsa A, Wang KH, Gouaux E (2013) X-ray structure of dopamine transporter elucidates antidepressant mechanism. Nature 503:85–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perry SW, Barbieri J, Tong N, Polesskaya O, Pudasaini S, Stout A, Lu R, Kiebala M, Maggirwar SB, Gelbard HA (2010) Human immunodeficiency virus-1 Tat activates calpain proteases via the ryanodine receptor to enhance surface dopamine transporter levels and increase transporter-specific uptake and Vmax. J Neurosci 30:14153–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Power C, McArthur JC, Nath A, Wehrly K, Mayne M, Nishio J, Langelier T, Johnson RT, Chesebro B (1998) Neuronal death induced by brain-derived human immunodeficiency virus type 1 envelope genes differs between demented and nondemented AIDS patients. J Virol 72:9045–53

    CAS  PubMed  PubMed Central  Google Scholar 

  • Purohit V, Rapaka R, Shurtleff D (2011) Drugs of abuse, dopamine, and HIV-associated neurocognitive disorders/HIV-associated dementia. Mol Neurobiol 44:102–10

    Article  CAS  PubMed  Google Scholar 

  • Rappaport J, Joseph J, Croul S, Alexander G, Del Valle L, Amini S, Khalili K (1999) Molecular pathway involved in HIV-1-induced CNS pathology: role of viral regulatory protein, Tat. J Leukoc Biol 65:458–65

    CAS  PubMed  Google Scholar 

  • Ray PE, Liu XH, Robinson LR, Reid W, Xu L, Owens JW, Jones OD, Denaro F, Davis HG, Bryant JL (2003) A novel HIV-1 transgenic rat model of childhood HIV-1-associated nephropathy. Kidney Int 63:2242–53

    Article  PubMed  Google Scholar 

  • Reid W, Sadowska M, Denaro F, Rao S, Foulke J Jr, Hayes N, Jones O, Doodnauth D, Davis H, Sill A, O'Driscoll P, Huso D, Fouts T, Lewis G, Hill M, Kamin-Lewis R, Wei C, Ray P, Gallo RC, Reitz M, Bryant J (2001) An HIV-1 transgenic rat that develops HIV-related pathology and immunologic dysfunction. Proc Natl Acad Sci U S A 98:9271–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reith ME, Coffey LL (1994) [3H]WIN 35,428 binding to the dopamine uptake carrier. II. Effect of membrane fractionation procedure and freezing. J Neurosci Methods 51:31–8

    Article  CAS  PubMed  Google Scholar 

  • Samuvel DJ, Jayanthi LD, Manohar S, Kaliyaperumal K, See RE, Ramamoorthy S (2008) Dysregulation of dopamine transporter trafficking and function after abstinence from cocaine self-administration in rats: evidence for differential regulation in caudate putamen and nucleus accumbens. J Pharmacol Exp Ther 325:293–301

    Article  CAS  PubMed  Google Scholar 

  • Sardar AM, Czudek C, Reynolds GP (1996) Dopamine deficits in the brain: the neurochemical basis of parkinsonian symptoms in AIDS. Neuroreport 7:910–2

    Article  CAS  PubMed  Google Scholar 

  • Scheller C, Arendt G, Nolting T, Antke C, Sopper S, Maschke M, Obermann M, Angerer A, Husstedt IW, Meisner F, Neuen-Jacob E, Muller HW, Carey P, Ter Meulen V, Riederer P, Koutsilieri E (2010) Increased dopaminergic neurotransmission in therapy-naive asymptomatic HIV patients is not associated with adaptive changes at the dopaminergic synapses. J Neural Transm 117:699–705

    Article  CAS  PubMed  Google Scholar 

  • Schmitt KC, Reith ME (2010) Regulation of the dopamine transporter: aspects relevant to psychostimulant drugs of abuse. Ann N Y Acad Sci 1187:316–40

    Article  CAS  PubMed  Google Scholar 

  • Schrödinger L (2010) The PyMOL Molecular Graphics System, Version 1.3r1

    Google Scholar 

  • Silvers JM, Aksenova MV, Aksenov MY, Mactutus CF, Booze RM (2007) Neurotoxicity of HIV-1 Tat protein: involvement of D1 dopamine receptor. Neurotoxicology 28:1184–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simioni S, Cavassini M, Annoni JM, Rimbault Abraham A, Bourquin I, Schiffer V, Calmy A, Chave JP, Giacobini E, Hirschel B, Du Pasquier RA (2010) Cognitive dysfunction in HIV patients despite long-standing suppression of viremia. AIDS 24:1243–50

    PubMed  Google Scholar 

  • Singh SK, Yamashita A, Gouaux E (2007) Antidepressant binding site in a bacterial homologue of neurotransmitter transporters. Nature 448:952–6

    Article  CAS  PubMed  Google Scholar 

  • Stanciu M, Wang Y, Kentor R, Burke N, Watkins S, Kress G, Reynolds I, Klann E, Angiolieri MR, Johnson JW, DeFranco DB (2000) Persistent activation of ERK contributes to glutamate-induced oxidative toxicity in a neuronal cell line and primary cortical neuron cultures. J Biol Chem 275:12200–6

    Article  CAS  PubMed  Google Scholar 

  • Wang GJ, Chang L, Volkow ND, Telang F, Logan J, Ernst T, Fowler JS (2004) Decreased brain dopaminergic transporters in HIV-associated dementia patients. Brain 127:2452–8

    Article  PubMed  Google Scholar 

  • Wang H, Elferich J, Gouaux E (2012) Structures of LeuT in bicelles define conformation and substrate binding in a membrane-like context. Nat Struct Mol Biol 19:212–9

    Article  PubMed  PubMed Central  Google Scholar 

  • Webb KM, Aksenov MY, Mactutus CF, Booze RM (2010) Evidence for developmental dopaminergic alterations in the human immunodeficiency virus-1 transgenic rat. J Neurovirol 16:168–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webber MP, Schoenbaum EE, Gourevitch MN, Buono D, Klein RS (1999) A prospective study of HIV disease progression in female and male drug users. AIDS 13:257–62

    Article  CAS  PubMed  Google Scholar 

  • Westendorp MO, Frank R, Ochsenbauer C, Stricker K, Dhein J, Walczak H, Debatin KM, Krammer PH (1995) Sensitization of T cells to CD95-mediated apoptosis by HIV-1 Tat and gp120. Nature 375:497–500

    Article  CAS  PubMed  Google Scholar 

  • Wise RA, Bozarth MA (1987) A psychomotor stimulant theory of addiction. Psychol Rev 94:469–92

    Article  CAS  PubMed  Google Scholar 

  • Yamashita A, Singh SK, Kawate T, Jin Y, Gouaux E (2005) Crystal structure of a bacterial homologue of Na+/Cl--dependent neurotransmitter transporters. Nature 437:215–23

    Article  CAS  PubMed  Google Scholar 

  • Yuan Y, Huang X, Midde NM, Quizon PM, Sun WL, Zhu J, Zhan CG (2015) Molecular mechanism of HIV-1 Tat interacting with human dopamine transporter. ACS Chem Neurosci 6:658–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Ananthan S, Mactutus CF, Booze RM (2011) Recombinant human immunodeficiency virus-1 transactivator of transcription1-86 allosterically modulates dopamine transporter activity. Synapse 65:1251–4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Apparsundaram S, Bardo MT, Dwoskin LP (2005) Environmental enrichment decreases cell surface expression of the dopamine transporter in rat medial prefrontal cortex. J Neurochem 93:1434–43

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Apparsundaram S, Dwoskin LP (2009a) Nicotinic receptor activation increases [3H]dopamine uptake and cell surface expression of dopamine transporters in rat prefrontal cortex. J Pharmacol Exp Ther 328:931–9

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Bardo MT, Bruntz RC, Stairs DJ, Dwoskin LP (2007) Individual differences in response to novelty predict prefrontal cortex dopamine transporter function and cell surface expression. Eur J Neurosci 26:717–28

    Article  PubMed  Google Scholar 

  • Zhu J, Green T, Bardo MT, Dwoskin LP (2004) Environmental enrichment enhances sensitization to GBR 12935-induced activity and decreases dopamine transporter function in the medial prefrontal cortex. Behav Brain Res 148:107–17

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Mactutus CF, Wallace DR, Booze RM (2009b) HIV-1 Tat protein-induced rapid and reversible decrease in [3H]dopamine uptake: dissociation of [3H]dopamine uptake and [3H]2beta-carbomethoxy-3-beta-(4-fluorophenyl)tropane (WIN 35,428) binding in rat striatal synaptosomes. J Pharmacol Exp Ther 329:1071–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Midde NM, Gomez AM, Sun WL, Harrod SB (2015) Intra-ventral tegmental area HIV-1 Tat1-86 attenuates nicotine-mediated locomotor sensitization and alters mesocorticolimbic ERK and CREB signaling in rats. Front Microbiol 6:540

    PubMed  PubMed Central  Google Scholar 

  • Zhu J, Reith ME (2008) Role of the dopamine transporter in the action of psychostimulants, nicotine, and other drugs of abuse. CNS Neurol Disord Drug Targets 7:393–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the National Institute on Drug Abuse to Jun Zhu (R01DA035714, R03DA024275, and R03DA026721). This work was previously presented at the 12th International Symposium on NeuroVirology; October 29–November 2, 2013, Washington D.C., USA. We would like to acknowledge Richard Sterling McCain Jr for his excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Yuan, Y., Midde, N.M. et al. HIV-1 transgenic rats display an increase in [3H]dopamine uptake in the prefrontal cortex and striatum. J. Neurovirol. 22, 282–292 (2016). https://doi.org/10.1007/s13365-015-0391-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13365-015-0391-6

Keywords

Navigation