Skip to main content

Advertisement

Log in

Dual-mixed HIV-1 coreceptor tropism and HIV-associated neurocognitive deficits

  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

HIV coreceptor usage of CXCR4 (X4) is associated with decreased CD4+ T-cell counts and accelerated disease progression, but the role of X4 tropism in HIV-associated neurocognitive disorders (HAND) has not previously been described. This longitudinal study evaluated data on 197 visits from 72 recently HIV-infected persons who had undergone up to four sequential neurocognitive assessments over a median of 160 days (IQR, 138–192). Phenotypic tropism testing (Trofile ES, Monogram, Biosciences) was performed on stored blood samples. Multivariable mixed model repeated measures regression was used to determine the association between HAND and dual-mixed (DM) viral tropism, estimated duration of infection (EDI), HIV RNA, CD4 count, and problematic methamphetamine use. Six subjects (8.3 %) had DM at their first neurocognitive assessment and four converted to DM in subsequent sampling (for total of 10 DM) at a median EDI of 10.1 months (IQR, 7.2–12.2). There were 44 (61.1 %) subjects who demonstrated HAND on at least one study visit. HAND was associated with DM tropism (odds ratio, 4.4; 95 % CI, 0.9–20.5) and shorter EDI (odds ratio 1.1 per month earlier; 95 % CI, 1.0–1.2). This study found that recency of HIV-1 infection and the development of DM tropism may be associated with HAND in the relatively early stage of infection. Together, these data suggest that viral interaction with cellular receptors may play an important role in the early manifestation of HAND.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Airoldi M, Bandera A, Trabattoni D, Tagliabue B, Arosio B, Soria A, Gori A (2012) Neurocognitive impairment in HIV-infected naive patients with advanced disease: the role of virus and intrathecal immune activation. Clin Dev Imm 2012:467154

    Google Scholar 

  • Antinori A, Arendt G, Becker JT, Brew BJ, Byrd DA, Cherner M, Wojna VE (2007) Updated research nosology for HIV-associated neurocognitive disorders. Neurology 69(18):1789–1799

    Article  PubMed  CAS  Google Scholar 

  • Benton AL, Hamsher KD, Sivan AB (1994) Multilingual aphasia examination: manual of instructions. AJA Assoc, Iowa City, IA

    Google Scholar 

  • Berger EA, Murphy PM, Farber JM (1999) Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Ann Rev Immun 17:657–700

    Article  CAS  Google Scholar 

  • Benedict RH, Schretlen D, Groninger L, Brandt J (1998) Hopkins verbal learning test-revised: normative data and analysis of inter-form and test–retest reliability. Clin Neuropsychol 12:43–55

    Article  Google Scholar 

  • Blackstone K, Iudicello JE, Morgan EE et al (2013) Human immunodeficiency virus infection heightens concurrent risk of functional dependence in persons with long-term methamphetamine use. J Addict Med 7:255–263

    Article  PubMed  CAS  Google Scholar 

  • Carey CL, Woods SP, Gonzalez R, Conover E, Marcotte TD, Grant I, Heaton RK (2004) Predictive validity of global deficit scores in detecting neuropsychological impairment in HIV infection. J Clin Exp Neuropsy 26(3):307–319

    Article  Google Scholar 

  • Chalmet K, Dauwe K, Foquet L, Baatz F, Seguin-Devaux C, Van Der Gucht B, Verhofstede C (2012) Presence of CXCR4-using HIV-1 in patients with recently diagnosed infection: correlates and evidence for transmission. J Infect Dis 205(2):174–184

    Article  PubMed  CAS  Google Scholar 

  • Chang L, Alicata D, Volkow N (2007) Structural and metabolic brain changes in the striatum associated with methamphetamine abuse. Addiction 1:16–32

    Article  Google Scholar 

  • Connor RI, Sheridan KE, Ceradini D, Choe S, Landau NR (1997) Change in coreceptor use correlates with disease progression in HIV-1-infected individuals. J Exp Med 185(4):621–628

    Article  PubMed  CAS  Google Scholar 

  • Cysique LA, Franklin D, Abramson I, Ellis RJ, Letendre S, Collier A (2011) Normative data and validation of a regression based summary score for assessing meaningful neuropsychological change. J Clin Exp Neuropsychol 33:505–522

    Article  PubMed  Google Scholar 

  • Daar ES, Kesler KL, Petropoulos CJ, Huang W, Bates M, Lail AE, Donfield SM (2007) Baseline HIV type 1 coreceptor tropism predicts disease progression. Clin Infec Dis 45(5):643–649

    Article  Google Scholar 

  • de Mendoza C, Rodriguez C, Garcia F, Eiros JM, Ruiz L, Caballero E, Soriano V (2007) Prevalence of X4 tropic viruses in patients recently infected with HIV-1 and lack of association with transmission of drug resistance. J Antimicrob Chem 59(4):698–704

    Article  Google Scholar 

  • Fiala M, Gujuluva C, Berger O, Bukrinsky M, Kim KS, Graves MC (2001) Chemokine receptors on brain endothelia—keys to HIV-1 neuroinvasion? Adv Exp Med Bio 493:35–40

    Article  CAS  Google Scholar 

  • Fiebig EW, Wright DJ, Rawal BD, Garrett PE, Schumacher RT, Peddada L, Busch MP (2003) Dynamics of HIV viremia and antibody seroconversion in plasma donors: implications for diagnosis and staging of primary HIV infection. AIDS 17(13):1871–1879

    Article  PubMed  Google Scholar 

  • Frange P, Galimand J, Goujard C, Deveau C, Ghosn J, Rouzioux C, Chaix ML (2009) High frequency of X4/DM-tropic viruses in PBMC samples from patients with primary HIV-1 subtype-B infection in 1996–2007: the French ANRS CO06 PRIMO Cohort Study. J Antimicrob Chem 64(1):135–141

    Article  CAS  Google Scholar 

  • Gray L, Roche M, Churchill MJ, Sterjovski J, Ellett A, Poumbourios P, Gorry PR (2009) Tissue-specific sequence alterations in the human immunodeficiency virus type 1 envelope favoring CCR5 usage contribute to persistence of dual-tropic virus in the brain. J Virology 83(11):5430–5441

    Article  PubMed  CAS  Google Scholar 

  • Hamlyn E, Hickling S, Porter K, Frater J, Phillips R, Robinson M, Fidler S (2012) Increased levels of CD4 T-cell activation in individuals with CXCR4 using viruses in primary HIV-1 infection. AIDS 26(7):887–890

    Article  PubMed  CAS  Google Scholar 

  • Harezlak J, Buchthal S, Taylor M, Schifitto G, Zhong J, Daar E, Navia B (2011) Persistence of HIV-associated cognitive impairment, inflammation, and neuronal injury in era of highly active antiretroviral treatment. AIDS 25(5):625–633

    Article  PubMed  CAS  Google Scholar 

  • Heaton RK, Clifford DB, Franklin DR Jr, Woods SP, Ake C, Vaida F, Grant I (2010) HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER study. Neurology 75(23):2087–2096

    Article  PubMed  Google Scholar 

  • Heaton RK, Marcotte TD, Mindt MR, Sadek J, Moore DJ, Bentley H, Grant I (2004) The impact of HIV-associated neuropsychological impairment on everyday functioning. J Int Neuropsy Soc 10(3):317–331

    Google Scholar 

  • Hecht FM, Wang L, Collier A, Little S, Markowitz M, Margolick J, Holte S (2006) A multicenter observational study of the potential benefits of initiating combination antiretroviral therapy during acute HIV infection. J Infect Dis 194(6):725–733

    Article  PubMed  Google Scholar 

  • Klove H (1963) Clinical neuropsychology. Medical Clin North Am 47:1647–1658

    CAS  Google Scholar 

  • Lavi E, Kolson DL, Ulrich AM, Fu L, Gonzalez-Scarano F (1998) Chemokine receptors in the human brain and their relationship to HIV infection. J Neurovirol 4(3):301–311

    Article  PubMed  CAS  Google Scholar 

  • Lentz MR, Kim WK, Kim H, Soulas C, Lee V, Venna N, Gonzalez RG (2011) Alterations in brain metabolism during the first year of HIV infection. J Neurovirol 17(3):220–229

    Article  PubMed  CAS  Google Scholar 

  • Lentz MR, Kim WK, Lee V, Bazner S, Halpern EF, Venna N, Gonzalez RG (2009) Changes in MRS neuronal markers and T cell phenotypes observed during early HIV infection. Neurology 72(17):1465–1472

    Article  PubMed  CAS  Google Scholar 

  • Letendre S (2011) Central nervous system complications in HIV disease: HIV-associated neurocognitive disorder. Top Antiviral Med 19(4):137–142

    Google Scholar 

  • Letendre S, Ances B, Gibson S, Ellis RJ (2007) Neurologic complications of HIV disease and their treatment [Congresses]. Topics HIV Med 15(2):32–39

    Google Scholar 

  • Little SJ, Frost SD, Wong JK, Smith DM, Pond SL, Ignacio CC, Richman DD (2008) Persistence of transmitted drug resistance among subjects with primary human immunodeficiency virus infection. J Virol 82(11):5510–5518

    Article  PubMed  CAS  Google Scholar 

  • Mefford ME, Gorry PR, Kunstman K, Wolinsky SM, Gabuzda D (2008) Bioinformatic prediction programs underestimate the frequency of CXCR4 usage by R5X4 HIV type 1 in brain and other tissues. AIDS Res Hum Retro 24(9):1215–1220

    Article  CAS  Google Scholar 

  • Moore DJ, Letendre SL, Morris S, Umlauf A, Deutsch R, Smith DM, Grant I (2011) Neurocognitive functioning in acute or early HIV infection. J Neurovirol 17(1):50–57

    Article  PubMed  Google Scholar 

  • Morris SR, Little SJ, Cunningham T, Garfein RS, Richman DD, Smith DM (2010) Evaluation of an HIV nucleic acid testing program with automated Internet and voicemail systems to deliver results. Ann Intern Med 152(12):778–785

    Article  PubMed  Google Scholar 

  • Norman MA, Moore DJ, Taylor M, Franklin D Jr, Cysique L, Ake C, Heaton RK (2011) Demographically corrected norms for African Americans and Caucasians on the Hopkins Verbal Learning Test-Revised, Brief Visuospatial Memory Test-Revised, Stroop Color and Word Test, and Wisconsin Card Sorting Test 64-Card Version. J Clin Exp Neuropsy 33(7):793–804

    Article  Google Scholar 

  • Ohagen A, Devitt A, Kunstman KJ, Gorry PR, Rose PP, Korber B, Gabuzda D (2003) Genetic and functional analysis of full-length human immunodeficiency virus type 1 env genes derived from brain and blood of patients with AIDS. J Virology 77(22):12336–12345

    Article  PubMed  CAS  Google Scholar 

  • Richman DD, Bozzette SA (1994) The impact of the syncytium-inducing phenotype of human immunodeficiency virus on disease progression. J Infect Dis 169(5):968–974

    Article  PubMed  CAS  Google Scholar 

  • Rieder P, Joos B, Scherrer A, Kuster H, Braun D, Grube C, Günthard H (2011) Characterization of human immunodeficiency virus type 1 (HIV-1) diversity and tropism in 145 patients with primary HIV-1 infection. Clin Infect Dis 53(12):1271–1279

    Article  PubMed  CAS  Google Scholar 

  • Reitan RM, Wolfson D (1993) The Halstead–Reitan Neuropsychological Test Battery: theory and clinical interpretation. Neuropsychology Press, Tucson, AZ

    Google Scholar 

  • Rippeth JD, Heaton RK, Carey CL, Marcotte TD, Gonzalez R, Wolfson T (2004) Methamphetamine dependence increases risk of neuropsychological impairment in HIV infected persons. J Int Neuropsychol Soc 10:1–14

    Article  PubMed  CAS  Google Scholar 

  • Sevigny JJ, Albert SM, McDermott MP, McArthur JC, Sacktor N, Conant K, Marder K (2004) Evaluation of HIV RNA and markers of immune activation as predictors of HIV-associated dementia. Neurology 63(11):2084–2090

    Article  PubMed  CAS  Google Scholar 

  • Shepherd JC, Jacobson LP, Qiao W, Jamieson BD, Phair JP, Piazza P, Margolick JB (2008) Emergence and persistence of CXCR4-tropic HIV-1 in a population of men from the multicenter AIDS cohort study. The Journal of infectious diseases 198(8):1104–1112

    Article  PubMed  Google Scholar 

  • Sierra S, Kaiser R, Lubke N, Thielen A, Schuelter E, Heger E, Lengauer T (2011) Prediction of HIV-1 coreceptor usage (tropism) by sequence analysis using a genotypic approach. J Vis Exp. doi:10.3791/3264

    PubMed  Google Scholar 

  • Skinner HA (1982) The drug abuse screening test. Addict Behav 7:363–371

    Article  PubMed  CAS  Google Scholar 

  • Spudich SS, Huang W, Nilsson AC, Petropoulos CJ, Liegler TJ, Whitcomb JM, Price RW (2005) HIV-1 chemokine coreceptor utilization in paired cerebrospinal fluid and plasma samples: a survey of subjects with viremia. The Journal of infectious diseases 191(6):890–898

    Article  PubMed  CAS  Google Scholar 

  • Thielen A, Lengauer T (2012) Geno2pheno[454]: a Web server for the prediction of HIV-1 coreceptor usage from next-generation sequencing data. Intervirology 55(2):113–117

    Article  PubMed  Google Scholar 

  • Valcour V, Sithinamsuwan P, Letendre S, Ances B (2011) Pathogenesis of HIV in the central nervous system. Current HIV/AIDS reports 8(1):54–61

    Article  PubMed  Google Scholar 

  • Wagner, G. A., Gianella, S., Pacold, M. E., Vigil, E., Caballero, G., Kosakovsky Pond, S. L., Smith, D. M. (2012). HIV-1 co-receptor tropism in primary and dual infection estimated with ultradeep sequencing. Paper presented at the CROI 2012, Seattle, WA, USA

  • Wang X, Foryt P, Ochs R, Chung JH, Wu Y, Parrish T, Ragin AB (2011) Abnormalities in resting-state functional connectivity in early human immunodeficiency virus infection. Brain Connections 1:207–217

    Article  CAS  Google Scholar 

  • Weber E, Morgan EE, Iudicello JI et al (2013) Substance use is a risk factor of neurocognitive deficits and neuropsychiatric distress in acute and early HIV infection. Journal of NeuroVirology 19:65–74

    Article  PubMed  CAS  Google Scholar 

  • Wilkin TJ, Goetz MB, Leduc R, Skowron G, Su Z, Chan ES, Coakley E (2011) Reanalysis of coreceptor tropism in HIV-1-infected adults using a phenotypic assay with enhanced sensitivity. Clin Inf Dis 52(7):925–928

    Article  CAS  Google Scholar 

  • Woods SP, Scott JC, Dawson MS, Morgan EE, Carey CL, Heaton RK, Grant I (2005) Construct validity of Hopkins Verbal Learning Test-Revised component process measures in an HIV-1 sample. Arc Clin Neuro 20(8):1061–1071

    Article  Google Scholar 

  • World Health Organization. (1998). Composite international diagnostic interview (CIDI, version 2.1). Geneva, Switzerland

  • Zhu T, Mo H, Wang N, Nam DS, Cao Y, Koup RA, Ho DD (1993) Genotypic and phenotypic characterization of HIV-1 patients with primary infection. Science 261(5125):1179–1181

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The Translational Methamphetamine AIDS Research Center (TMARC) group is affiliated with the University of California, San Diego (UCSD) and the Sanford-Burnham Medical Research Institute. The TMARC is comprised of: Director: Igor Grant, M.D.; Co-Directors: Ronald J. Ellis, M.D., Ph.D., Cristian Achim, M.D., Ph.D., and Scott Letendre, M.D.; Center Manager: Steven Paul Woods, Psy.D.; Aaron Carr (Assistant Center Manager); Clinical Assessment and Laboratory Core: Scott Letendre, M.D. (P.I.), Ronald J. Ellis, M.D., Ph.D., Rachel Schrier, Ph.D.; Neuropsychiatric Core: Robert K. Heaton, Ph.D. (P.I.), J. Hampton Atkinson, M.D., Mariana Cherner, Ph.D., Thomas Marcotte, Ph.D., Erin E. Morgan, Ph.D.; Neuroimaging Core: Gregory Brown, Ph.D. (P.I.), Terry Jernigan, Ph.D., Anders Dale, Ph.D., Thomas Liu, Ph.D., Miriam Scadeng, Ph.D., Christine Fennema-Notestine, Ph.D., Sarah L. Archibald, M.A.; Neurosciences and Animal Models Core: Cristian Achim, M.D., Ph.D., Eliezer Masliah, M.D., Stuart Lipton, M.D., Ph.D.; Participant Unit: J. Hampton Atkinson, M.D., Rodney von Jaeger, M.P.H. (Unit Manager); Data Management and Information Systems Unit: Anthony C. Gamst, Ph.D., Clint Cushman (Unit Manager); Statistics Unit: Ian Abramson, Ph.D. (P.I.), Florin Vaida, Ph.D., Reena Deutsch, Ph.D., Anya Umlauf, M.S.; Project 1: Arpi Minassian, Ph.D. (P.I.), William Perry, Ph.D., Mark Geyer, Ph.D., Brook Henry, Ph.D.; Project 2: Amanda B. Grethe, Ph.D. (P.I.), Martin Paulus, M.D., Ronald J. Ellis, M.D., Ph.D.; Project 3: Sheldon Morris, M.D., M.P.H. (P.I.), David M. Smith, M.D., M.A.S., Igor Grant, M.D.; Project 4: Svetlana Semenova, Ph.D. (P.I.), Athina Markou, Ph.D.; Project 5: Marcus Kaul, Ph.D. (P.I.). The authors report no conflicts of interest. The views expressed in this article are those of the authors and do not reflect the official policy or position of the Department of the Navy, Department of Defense, nor the United States Government. We are grateful to all the participants in the San Diego Primary Infection Cohort, CHARTER and TMARC. Phenotypic tropism assays in this study were performed at Monogram Biosciences Clinical Reference Laboratory.

Author contributions

SRM participated in the study design, arranged samples for testing, performed statistical analysis and wrote the primary version of the manuscript; RD performed statistical analysis and participated in writing; SPW was involved in the analysis plan and participated in writing the primary version; EEM was involved in the psychological battery analysis and participated in review of manuscript; DMS participated in study design, enrolled participants, analyzed data and writing of the manuscript, MVV performed the laboratory experiments; SJL and enrolled participants, RKH, SJL, SLL, and IG designed the overarching studies that enrolled the subjects and revised the manuscript. All authors read and approved the final manuscript.

Funding

This work was supported by the US National Institutes of Health (NIH) awards AI69432, AI043638, MH062512, MH083552, AI100665, AI077304, AI36214, AI047745, AI074621, GM093939, DA026306, AI080353, AI306214 (CFAR), AI27670 (ACTU), AI43638, DA12065, and the California HIV Research Program grant RN07-SD-702.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheldon R. Morris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morris, S.R., Woods, S.P., Deutsch, R. et al. Dual-mixed HIV-1 coreceptor tropism and HIV-associated neurocognitive deficits. J. Neurovirol. 19, 488–494 (2013). https://doi.org/10.1007/s13365-013-0203-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13365-013-0203-9

Keywords

Navigation