Skip to main content
Log in

Insights into the Mechanism of Protein Electrospray Ionization From Salt Adduction Measurements

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

The mechanisms whereby protein ions are liberated from charged droplets during electrospray ionization (ESI) remain under investigation. Compact conformers electrosprayed from aqueous solution in positive ion mode likely follow the charged residue model (CRM), which envisions analyte release after solvent evaporation to dryness. The concentration of nonvolatile salts such as NaCl increases sharply within vanishing CRM droplets, promoting nonspecific pairing of Cl- and Na+ with charged groups on the protein surface. For unfolded proteins, it has been proposed that ion formation occurs via the chain ejection model (CEM). During the CEM proteins are expelled from the droplet long before complete solvent evaporation has taken place. Here we examine whether salt adduction levels support the view that folded and unfolded proteins follow different ESI mechanisms. Solvent evaporation during the CEM is expected to be less extensive and, hence, the salt concentration at the point of protein release should be substantially lower than for the CRM. CEM ions should therefore exhibit lower adduction levels than CRM species. We explore the adduction behavior of several proteins that were chosen to allow comparative studies on folded and unfolded structures in the same solution. In-source activation eliminates chloride adducts via HCl release, generating protein ions that are heterogeneously charged because of sodiation and protonation. Sodiation levels measured under such conditions provide estimates of the salt adduction behavior experienced by the “nascent” analyte ions. Sodiation levels are significantly reduced for unfolded proteins, supporting the view that these species are indeed formed via the CEM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Fenn, J.B.: Electrospray wings for molecular elephants (Nobel lecture). Angew. Chem. Int. Ed. 42, 3871–3894 (2003)

    Article  CAS  Google Scholar 

  2. Kaltashov, I.A., Bobst, C.E., Abzalimov, R.R.: Mass spectrometry-based methods to study protein architecture and dynamics. Protein Sci. 22, 530–544 (2013)

    Article  CAS  Google Scholar 

  3. Heck, A.J.R.: Native mass spectrometry: a bridge between interactomics and structural biology. Nat. Methods 5, 927–933 (2008)

    Article  CAS  Google Scholar 

  4. Gomez, A., Tang, K.: Charge and fission of droplets in electrostatic sprays. Phys. Fluids 6, 404–414 (1994)

    Article  CAS  Google Scholar 

  5. Kebarle, P., Verkerk, U.H.: Electrospray: from ions in solutions to ions in the gas phase, what we know now. Mass Spectrom. Rev. 28, 898–917 (2009)

    Article  CAS  Google Scholar 

  6. Hogan, C.J., Carroll, J.A., Rohrs, H.W., Biswas, P., Gross, M.L.: Combined charged residue-field emission model of macromolecular electrospray ionization. Anal. Chem. 81, 369–377 (2009)

    Article  CAS  Google Scholar 

  7. Marchese, R., Grandori, R., Carloni, R., Raugei, S.: A computational model for protein ionization by electrospray based on gas-phase basicity. J. Am. Soc. Mass Spectrom. 23, 1903–1910 (2012)

    Article  CAS  Google Scholar 

  8. Nguyen, S., Fenn, J.B.: Gas-phase ions of solute species from charged droplets of solutions. Proc. Natl. Acad. Sci. U. S. A. 104, 1111–1117 (2007)

    Article  CAS  Google Scholar 

  9. Iribarne, J.V., Thomson, B.A.: On the evaporation of small ions from charged droplets. J. Chem. Phys. 64, 2287–2294 (1976)

    Article  CAS  Google Scholar 

  10. Loscertales, I.G., de la Mora, J.F.: Experiments on the kinetics of field evaporation of small ions from droplets. J. Chem. Phys. 103, 5041–5060 (1995)

    Article  CAS  Google Scholar 

  11. Cole, R.B.: Some tenets pertaining to electrospray ionization mass spectrometry. J. Mass Spectrom. 35, 763–772 (2000)

    Article  CAS  Google Scholar 

  12. Kaltashov, I.A., Abzalimov, R.R.: Do ionic charges in ESI MS provide useful information on macromolecular structure? J. Am. Soc. Mass Spectrom. 19, 1239–1246 (2008)

    Article  CAS  Google Scholar 

  13. Chowdhury, S.K., Katta, V., Chait, B.T.: Probing conformational changes in proteins by mass spectrometry. J. Am. Chem. Soc. 112, 9012–9013 (1990)

    Article  CAS  Google Scholar 

  14. Borysic, A.J.H., Radford, S.E., Ashcroft, A.E.: Co-populated conformational ensembles of b2-mMicroglobulin uncovered quantitatively by electrospray ionization mass spectrometry. J. Biol. Chem. 279, 27069–27077 (2004)

    Article  Google Scholar 

  15. Grandori, R.: Detecting equilibrium cytochrome c folding intermediates by electrospray ionization mass spectrometry: two partially folded forms populate the molten globule state. Protein Sci. 11, 453–458 (2002)

    Article  CAS  Google Scholar 

  16. Douglass, K.A., Venter, A.R.: Predicting the highest intensity ion in multiple charging envelopes observed for denatured proteins during electrospray ionization mass spectrometry by inspection of the amino acid sequence. Anal. Chem. 85, 8212–8218 (2013)

    Article  CAS  Google Scholar 

  17. Walters, B.T., Mayne, L., Hinshaw, J.R., Sosnick, T.R., Englander, S.W.: Folding of a large protein at high structural resolution. Proc. Natl. Acad. Sci. U. S. A. 110, 18898–18903 (2013)

    Article  CAS  Google Scholar 

  18. Lin, H., Kitova, E.N., Johnson, M.A., Eugenio, L., Ng, K.K.S., Klassen, J.S.: Electrospray ionization-induced protein unfolding. J. Am. Soc. Mass Spectrom. 23, 2122–2131 (2012)

    Article  CAS  Google Scholar 

  19. Konermann, L., Douglas, D.J.: Unfolding of proteins monitored by electrospray ionization mass spectrometry: a comparison of positive and negative ion modes. J. Am. Soc. Mass Spectrom. 9, 1248–1254 (1998)

    Article  CAS  Google Scholar 

  20. Dole, M., Mack, L.L., Hines, R.L., Mobley, R.C., Ferguson, L.D., Alice, M.B.: Molecular beams of macroions. J. Chem. Phys. 49, 2240–2249 (1968)

    Article  CAS  Google Scholar 

  21. de la Mora, F.J.: Electrospray ionization of large multiply charged species proceeds via Dole's charged residue mechanism. Anal. Chim. Acta. 406, 93–104 (2000)

    Article  Google Scholar 

  22. Iavarone, A.T., Williams, E.R.: Mechanism of charging and supercharging molecules in electrospray ionization. J. Am. Chem. Soc. 125, 2319–2327 (2003)

    Article  CAS  Google Scholar 

  23. Smith, J.N., Flagan, R.C., Beauchamp, J.L.: Droplet evaporation and discharge dynamics in electrospray ionization. J. Phys. Chem. A 106, 9957–9967 (2002)

    Article  CAS  Google Scholar 

  24. Kaltashov, I.A., Mohimen, A.: Estimates of protein surface area in solution by electrospray ionization mass spectrometry. Anal. Chem. 77, 5370–5379 (2005)

    Article  CAS  Google Scholar 

  25. Allen, S.J., Schwartz, A.M., Bush, M.F.: Effects of polarity on the structures and charge states of native-like proteins and protein complexes in the gas phase. Anal. Chem. 85, 12055–12061 (2013)

    Article  CAS  Google Scholar 

  26. Konermann, L., Ahadi, E., Rodriguez, A.D., Vahidi, S.: Unraveling the mechanism of electrospray ionization. Anal. Chem. 85, 2–9 (2013)

    Article  CAS  Google Scholar 

  27. Chung, J.K., Consta, S.: Release mechanisms of poly(ethylene glycol) macroions from aqueous charged nanodroplets. J. Phys. Chem. B 116, 5777–5785 (2012)

    Article  CAS  Google Scholar 

  28. Hall, Z., Hernández, H., Marsh, J.A., Teichmann, S.A., Robinson, C.V.: The role of salt bridges, charge density, and subunit flexibility in determining disassembly routes of protein complexes. Structure 21, 1325–1337 (2013)

    Article  CAS  Google Scholar 

  29. Fegan, S.K., Thachuk, M.: A charge moving algorithm for molecular dynamics simulations of gas-phase proteins. J. Chem. Theory Comput. 9, 2531–2539 (2013)

    Article  CAS  Google Scholar 

  30. Fenn, J.B., Rosell, J., Meng, C.K.: In electrospray ionization, how much pull does an ion need to escape its droplet prison? J. Am. Soc. Mass Spectrom. 8, 1147–1157 (1997)

    Article  CAS  Google Scholar 

  31. Krusemark, C.J., Frey, B.L., Belshaw, P.J., Smith, L.M.: Modifying the charge state distribution of proteins in electrospray ionization mass spectrometry by chemical derivatization. J. Am. Soc. Mass Spectrom. 20, 1617–1625 (2009)

    Article  CAS  Google Scholar 

  32. Cech, N.B., Enke, C.G.: Practical implication of some recent studies in electrospray ionization fundamentals. Mass Spectrom. Rev. 20, 362–387 (2001)

    Article  CAS  Google Scholar 

  33. Kruve, A., Kaupmees, K., Liigand, J., Oss, M., Leito, I.: Sodium adduct formation efficiency in ESI source. J. Mass Spectrom. 48, 695–702 (2013)

    Article  CAS  Google Scholar 

  34. Burdette, C.Q., Marcus, R.K.: In-line desalting of proteins from buffer and synthetic urine solution prior to ESI-MS analysis via a capillary-channeled polymer fiber microcolumn. J. Am. Soc. Mass Spectrom. 24, 975–978 (2013)

    Article  CAS  Google Scholar 

  35. Hannis, J.C., Muddiman, D.C.: Characterization of a microdialysis approach to prepare polymerase chain reaction products for electrospray ionization mass spectrometry using on-line ultraviolet absorbance measurements and inductively coupled plasma-atomic emission spectroscopy. Rapid Commun. Mass Spectrom. 13, 323–330 (1999)

    Article  CAS  Google Scholar 

  36. Abian, J., Oosterkamp, A.J., Gelpi, E.: Comparison of conventional, narrow-bore and capillary liquid chromatography/mass spectrometry for electrospray ionization mass spectrometry: practical considerations. J. Mass Spectrom. 34, 244–254 (1999)

    Article  CAS  Google Scholar 

  37. Cavanagh, J., Benson, L.M., Thompson, R., Naylor, S.: In-line desalting mass spectrometry for the study of noncovalent biological complexes. Anal. Chem. 75, 3281–3286 (2003)

    Article  CAS  Google Scholar 

  38. Sun, J., Kitova, E.N., Sun, N., Klassen, J.S.: Method for identifying nonspecific protein–protein interactions in nanoelectrospray ionization mass spectrometry. Anal. Chem. 79, 8301–8311 (2007)

    Article  CAS  Google Scholar 

  39. Verkerk, U.H., Kebarle, P.: Ion–ion and ion–molecule reactions at the surface of proteins produced by nanospray. information on the number of acidic residues and control of the number of ionized acidic and basic residues. J. Am. Soc. Mass Spectrom. 16, 1325–1341 (2005)

    Article  CAS  Google Scholar 

  40. Grewal, R.N., El Aribi, H., Smith, J.C., Rodriquez, C.F., Hopkinson, A.C., Siu, K.W.M.: Multiple substitution of protons by sodium ions in sodiated oligoglycines. Int. J. Mass Spectrom. 219, 89–99 (2002)

    Article  CAS  Google Scholar 

  41. Han, L., Hyung, S.-J., Ruotolo, B.T.: Bound cations significantly stabilize the structure of multiprotein complexes in the gas phase. Angew. Chem. Int. Ed. 51, 5692–5695 (2012)

    Article  CAS  Google Scholar 

  42. Berezovskaya, Y., Porrini, M., Barran, P.E.: The effect of salt on the conformations of three model proteins is revealed by variable temperature ion mobility mass spectrometry. Int. J. Mass Spectrom. 345, 8–18 (2013)

    Article  Google Scholar 

  43. Liu, J., Konermann, L.: Cation-induced stabilization of protein complexes in the gas phase: mechanistic insights from hemoglobin dissociation studies. J. Am. Soc. Mass Spectrom. 25, 595–603 (2014)

    Article  CAS  Google Scholar 

  44. Bagal, D., Kitova, E.N., Liu, L., El-Hawiet, A., Schnier, P.D., Klassen, J.S.: Gas phase stabilization of noncovalent protein complexes formed by electrospray ionization. Anal. Chem. 81, 7801–7806 (2009)

    Article  CAS  Google Scholar 

  45. Borysik, A.J., Hewitt, D.J., Robinson, C.V.: Detergent release prolongs the lifetime of native-like membrane protein conformations in the gas-phase. J. Am. Chem. Soc. 135, 6078–6083 (2013)

    Article  CAS  Google Scholar 

  46. Ly, T., Julian, R.R.: Using ESI-MS to probe protein structure by site-specific noncovalent attachment of 18-Crown-6. J. Am. Soc. Mass Spectrom. 17, 1209–1215 (2006)

    Article  CAS  Google Scholar 

  47. Flick, T.G., Merenbloom, S.I., Williams, E.R.: A simple and robust method for determining the number of basic sites in peptides and proteins using electrospray ionization mass spectrometry. Anal. Chem. 83, 2210–2214 (2011)

    Article  CAS  Google Scholar 

  48. Liu, X., Cole, R.B.: Best Match” model and effect of Na+/H+exchange on anion attachment to peptides and stability of formed adducts in negative ion electrospray mass spectrometry. J. Am. Soc. Mass Spectrom. 25, 204–213 (2014)

    Article  CAS  Google Scholar 

  49. Juraschek, R., Dulcks, T., Karas, M.: Nanoelectrospray—more than just a minimized-flow electrospray ionization source. J. Am. Soc. Mass Spectrom. 10, 300–308 (1999)

    Article  CAS  Google Scholar 

  50. Gamero-Castano, M., de la Mora, J.F.: Modulations in the abundance of salt clusters in electrosprays. Anal. Chem. 72, 1426–1429 (2000)

    Article  CAS  Google Scholar 

  51. Pan, P., Gunawardena, H.P., Yu, X., McLuckey, S.A.: Nanospray ionization of protein mixtures: solution pH and protein pI. Anal. Chem. 76, 1165–1174 (2004)

    Article  CAS  Google Scholar 

  52. Wang, G., Cole, R.B.: Charged residue versus ion evaporation for formation of alkali metal halide clusters ions in ESI. Anal. Chim. Acta. 406, 53–65 (2000)

    Article  CAS  Google Scholar 

  53. Spencer, E.A.C., Ly, T., Julian, R.K.: Formation of the serine octamer: ion evaporation or charge residue? Int. J. Mass Spectrom. 270, 166–172 (2008)

    Article  CAS  Google Scholar 

  54. Douglass, K.A., Venter, A.R.: Investigating the role of adducts in protein supercharging with sulfolane. J. Am. Soc. Mass Spectrom. 23, 489–497 (2012)

    Article  CAS  Google Scholar 

  55. Wortmann, A., Kistler-Momotova, A., Zenobi, R., Heine, M.C., Wilhelm, O., Pratsinis, S.E.: Shrinking droplets in electrospray ionization and their influence on chemical equilibria. J. Am. Soc. Mass Spectrom. 18, 385–393 (2007)

    Article  CAS  Google Scholar 

  56. Teale, F.W.J.: Cleavage of the heme-protein link by acid methylethylketone. Biochim. Biophys. Acta 35, 543 (1959)

    Article  CAS  Google Scholar 

  57. Antonini, E., Brunori, M. Hemoglobin and myoglobin in their reactions with ligands; North-Holland Publishing Company: Amsterdam, London, Vol. 21 (1971)

  58. Giles, K., Williams, J.P., Campuzano, I.: Enhancements in traveling wave ion mobility resolution. Rapid Commun. Mass Spectrom. 25, 1559–1566 (2011)

    Article  CAS  Google Scholar 

  59. Dobo, A., Kaltashov, I.A.: Detection of multiple protein conformational ensembles in solution via deconvolution of charge-state distributions in ESI MS. Anal. Chem. 73, 4763–4773 (2001)

    Article  CAS  Google Scholar 

  60. Ruotolo, B.T., Benesch, J.L.P., Sandercock, A.M., Hyung, S.-J., Robinson, C.V.: Ion mobility-mass spectrometry analysis of large protein complexes. Nat. Protocols 3, 1139–1152 (2008)

    Article  CAS  Google Scholar 

  61. Marty, M.T., Zhang, H., Cui, W., Gross, M.L., Sligar, S.G.: Interpretation and deconvolution of nanodisc native mass spectra. J. Am. Soc. Mass Spectrom. 25, 269–277 (2014)

    Article  CAS  Google Scholar 

  62. Thomson, B.A.: Declustering and fragmentation of protein ions from an electrospray ion source. J. Am. Soc. Mass Spectrom. 8, 1053–1058 (1997)

    Article  CAS  Google Scholar 

  63. Yin, S., Xie, Y., Loo, J.A.: Mass spectrometry of protein-ligand complexes: enhanced gas-phase stability of ribonuclease-nucleotide complexes. J. Am. Soc. Mass Spectrom. 19, 1199–1208 (2008)

    Article  CAS  Google Scholar 

  64. Samalikova, M., Grandori, R.: Role of opposite charge in protein electrospray ionization mass spectrometry. J. Mass Spectrom. 38, 941–947 (2003)

    Article  CAS  Google Scholar 

  65. Hughson, F.M., Wright, P.E., Baldwin, R.L.: Structural characterisation of a partly folded apomyoglobin intermediate. Science 249, 1544–1548 (1990)

    Article  CAS  Google Scholar 

  66. Eliezer, D., Yao, J., Dyson, H.J., Wright, P.E.: Structural and dynamic characterization of partially folded states of apomyoglobin and implications for protein folding. Nat. Struct. Biol. 5, 148–155 (1998)

    Article  CAS  Google Scholar 

  67. Weisbuch, S., Gérard, F., Pasdeloup, M., Cappadoro, J., Dupont, Y., Jamin, M.: Cooperative sub-millisecond folding kinetics of apomyoglobin pH 4 intermediate. Biochemistry 44, 7013–7023 (2005)

    Article  CAS  Google Scholar 

  68. Creighton, T.E.: Proteins. W. H. Freeman & Co, New York (1993)

    Google Scholar 

  69. Privalov, P.L., Tiktopulo, E.I., Venyaminov, S.Y., Griko, Y.V., Makhatadze, G.I., Khechinashvili, N.N.: Heat-capacity and conformation of proteins in the denatured state. J. Mol. Biol. 205, 737–750 (1989)

    Article  CAS  Google Scholar 

  70. Loo, J.A., Edmonds, C.G., Udseh, H.R., Smith, R.D.: Effect of reducing disulfide-containing proteins on electrospray ionisation mass spectra. Anal. Chem. 62, 693–698 (1990)

    Article  CAS  Google Scholar 

  71. Chen, M., Cook, K.D.: Oxidation artifacts in the electrospray mass spectrometry of ab peptide. Anal. Chem. 79, 2031–3036 (2007)

    Article  CAS  Google Scholar 

  72. Nishiyama, H., Maeda, H.: Reduced lysozyme in solution and its interaction with nonionic surfactants. Biophys. Chem. 44, 199–208 (1992)

    Article  CAS  Google Scholar 

  73. Pan, P., McLuckey, S.A.: electrospray ionization of protein mixtures at low pH. Anal. Chem. 75, 1491–1499 (2003)

    Article  CAS  Google Scholar 

  74. van der Spoel, D., Marklund, E.G., Larsson, D.S.D., Caleman, C.: Proteins, lipids, and water in the gas phase. Macromol. Biosci. 11, 50–59 (2011)

    Article  Google Scholar 

  75. Daub, C.D., Cann, N.M.: How are completely desolvated ions produced in electrospray ionization: insights from molecular dynamics simulations. Anal. Chem. 83, 8372–8376 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding was provided by the Natural Sciences and Engineering Research Council of Canada, the Canada Foundation for Innovation, and the Canada Research Chairs Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Konermann.

Additional information

Xuanfeng Yue and Siavash Vahidi contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Additional material as described in the text (available on the Springer/JASMS web site). (PDF 236 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, X., Vahidi, S. & Konermann, L. Insights into the Mechanism of Protein Electrospray Ionization From Salt Adduction Measurements. J. Am. Soc. Mass Spectrom. 25, 1322–1331 (2014). https://doi.org/10.1007/s13361-014-0905-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-014-0905-0

Key words

Navigation