Skip to main content
Log in

A Generic Multiple Reaction Monitoring Based Approach for Plant Flavonoids Profiling Using a Triple Quadrupole Linear Ion Trap Mass Spectrometry

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

Flavonoids are one of the largest classes of plant secondary metabolites serving a variety of functions in plants and associating with a number of health benefits for humans. Typically, they are co-identified with many other secondary metabolites using untargeted metabolomics. The limited data quality of untargeted workflow calls for a shift from the breadth-first to the depth-first screening strategy when a specific biosynthetic pathway is focused on. Here we introduce a generic multiple reaction monitoring (MRM)-based approach for flavonoids profiling in plants using a hybrid triple quadrupole linear ion trap (QTrap) mass spectrometer. The approach includes four steps: (1) preliminary profiling of major aglycones by multiple ion monitoring triggered enhanced product ion scan (MIM-EPI); (2) glycones profiling by precursor ion triggered EPI scan (PI-EPI) of major aglycones; (3) comprehensive aglycones profiling by combining MIM-EPI and neutral loss triggered EPI scan (NL-EPI) of major glycone; (4) in-depth flavonoids profiling by MRM-EPI with elaborated MRM transitions. Particularly, incorporation of the NH3 loss and sugar elimination proved to be very informative and confirmative for flavonoids screening. This approach was applied for profiling flavonoids in Astragali radix (Huangqi), a famous herb widely used for medicinal and nutritional purposes in China. In total, 421 flavonoids were tentatively characterized, among which less than 40 have been previously reported in this medicinal plant. This MRM-based approach provides versatility and sensitivity that required for flavonoids profiling in plants and serves as a useful tool for plant metabolomics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Sumner, L.W., Mendes, P., Dixon, R.A.: Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochemistry 62, 817–836 (2003)

    Article  CAS  Google Scholar 

  2. D’Auria, J.C., Gershenzon, J.: The secondary metabolism of Arabidopsis thaliana: growing like a weed. Curr. Opin. Plant Biol. 8, 308–316 (2005)

    Article  Google Scholar 

  3. Fernie, A.R.: The future of metabolic phytochemistry: larger numbers of metabolites, higher resolution, greater understanding. Phytochemistry 68, 2861–2880 (2008)

    Article  Google Scholar 

  4. Giavalisco, P., Köhl, K., Hummel, J., Seiwert, B., Willmitzer, L.: 13C isotope-labeled metabolomes allowing for improved compound annotation and relative quantification in liquid chromatography-mass spectrometry-based metabolomic research. Anal. Chem. 81, 6546–6551 (2009)

    Article  CAS  Google Scholar 

  5. Iijima, Y., Nakura, Y., Ogata, Y., Tanaka, K., Sakurai, N., Suda, K., Suzuki, T., Suzuki, H., Okazaki, K., Kitayama, M., Kanaya, S., Aoki, K., Shibata, D.: Metabolite annotations based on the integration of mass spectral information. Plant J. 54, 949–962 (2008)

    Article  CAS  Google Scholar 

  6. Lewis-Stanislaus, A.E., Li, L.: A method for comprehensive analysis of urinary acylglycines by using ultra-performance liquid chromatography quadrupole linear ion trap mass spectrometry. J. Am. Soc. Mass Spectrom. 23, 964–976 (2012)

    Article  Google Scholar 

  7. Zhao, Y.L., Boyd, J.M., Sawyer, M.B., Li, X.F.: Liquid chromatography tandem mass spectrometry determination of free and conjugated estrogens in breast cancer patients before and after exemestane treatment. Anal. Chim. Acta. 806, 172–179 (2014)

    Article  CAS  Google Scholar 

  8. Morreel, K., Goeminne, G., Storme, V., Sterck, L., Ralph, J., Coppieters, W., Breyne, P., Steenackers, M., Georges, M., Messens, E., Boerjan, W.: Genetical metabolomics of flavonoid biosynthesis in Populus: a case study. Plant J. 47, 224–237 (2006)

    Article  CAS  Google Scholar 

  9. Liu, R., Li, Q., Ma, R., Lin, X., Xu, H., Bi, K.: Determination of polyamine metabolome in plasma and urine by ultrahigh performance liquid chromatography-tandem mass spectrometry method: application to identify potential markers for human hepatic cancer. Anal. Chim. Acta. 791, 36–45 (2013)

    Article  CAS  Google Scholar 

  10. Strassburg, K., Huijbrechts, A.M., Kortekaas, K.A., Lindeman, J.H., Pedersen, T.L., Dane, A., Berger, R., Brenkman, A., Hankemeier, T., van Duynhoven, J., Kalkhoven, E., Newman, J.W., Vreeken, R.J.: Quantitative profiling of oxylipins through comprehensive LC-MS/MS analysis: application in cardiac surgery. Anal. Bioanal. Chem. 404, 1413–1426 (2012)

    Article  CAS  Google Scholar 

  11. Lutz, U., Lutz, R.W., Lutz, W.K.: Metabolic profiling of glucuronides in human urine by LC-MS/MS and partial least-squares discriminant analysis for classification and prediction of gender. Anal. Chem. 78, 4564–4571 (2006)

    Article  CAS  Google Scholar 

  12. Zuniga, A., Li, L.: Ultra-high performance liquid chromatography tandem mass spectrometry for comprehensive analysis of urinary acylcarnitines. Anal. Chim. Acta. 689, 77–84 (2011)

    Article  CAS  Google Scholar 

  13. Wen, B., Ma, L., Nelson, S.D., Zhu, M.S.: High-throughput screening and characterization of reactive metabolites using polarity switching of hybrid triple quadrupole linear ion trap mass spectrometry. Anal. Chem. 80, 1788–1799 (2008)

    Article  CAS  Google Scholar 

  14. Sandra, K., Devreese, B., Van Beeumen, J., Stals, I., Claeyssens, M.: The Q-Trap mass spectrometer, a novel tool in the study of protein glycosylation. J. Am. Soc. Mass Spectrom. 15, 413–423 (2004)

    Article  CAS  Google Scholar 

  15. Scholz, K., Dekant, W., Völkel, W., Pähler, A.: Rapid detection and identification of N-acetyl-L-cysteine thioethers using constant neutral loss and theoretical multiple reaction monitoring combined with enhanced product-ion scans on a linear ion trap mass spectrometer. J. Am. Soc. Mass Spectrom. 16, 1976–1984 (2005)

    Article  CAS  Google Scholar 

  16. Wagner, S., Scholz, K., Sieber, M., Kellert, M., Voelkel, W.: Tools in metabonomics: an integrated validation approach for LC-MS metabolic profiling of mercapturic acids in human urine. Anal. Chem. 79, 2918–2926 (2007)

    Article  CAS  Google Scholar 

  17. Steimer, S., Sjöberg, P.J.: Anthocyanin characterization utilizing liquid chromatography combined with advanced mass spectrometric detection. J. Agric. Food Chem. 59, 2988–2996 (2011)

    Article  CAS  Google Scholar 

  18. Yao, M., Ma, L., Humphreys, W.G., Zhu, M.S.: Rapid screening and characterization of drug metabolites using a multiple ion monitoring–dependent MS/MS acquisition method on a hybrid triple quadrupole-linear ion trap mass spectrometer. J. Mass Spectrom. 43, 1364–1375 (2008)

    Article  CAS  Google Scholar 

  19. Yao, M., Ma, L., Duchoslav, E., Zhu, M.S.: Rapid screening and characterization of drug metabolites using multiple ion monitoring dependent product ion scan and post-acquisition data mining on a hybrid triple quadrupole-linear ion trap mass spectrometer. Rapid Commun. Mass Spectrom. 23, 1683–1693 (2009)

    Article  CAS  Google Scholar 

  20. Koes, R.E., Quattrocchio, F., Mol, J.N.M.: The flavonoid biosynthetic pathway in plants: function and evolution. Bioessays 16, 123–132 (1994)

    Article  CAS  Google Scholar 

  21. Kuhnau, J.: The flavonoids. A class of semi-essential food components: their role in human nutrition. World Rev. Nutr. Diet. 24, 117–191 (1976)

    CAS  Google Scholar 

  22. Fukumoto, L.R., Mazza, G.: Assessing antioxidant and prooxidant activities of phenolic compounds. J. Agric. Food Chem. 48, 3597–3604 (2000)

    Article  CAS  Google Scholar 

  23. Cushnie, T.P., Lamb, A.J.: Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 26, 343–356 (2005)

    Article  CAS  Google Scholar 

  24. Aron, P.M., Kennedy, J.A.: Flavan-3-ols: nature, occurrence, and biological activity. Mol. Nutr. Food Res. 52, 79–104 (2008)

    Article  CAS  Google Scholar 

  25. Chahar, M.K., Sharma, N., Dobhal, M.P., Joshi, Y.C.: Flavonoids: a versatile source of anticancer drugs. Pharmacogn. Rev. 5, 1–12 (2011)

    Article  CAS  Google Scholar 

  26. Hurtado-Fernández, E., Carrasco-Pancorbo, A., Fernández-Gutiérrez, A.: Profiling LC-DAD-ESI-TOF MS method for the determination of phenolic metabolites from avocado (Persea americana). J. Agric. Food Chem. 59, 2255–2267 (2011)

    Article  Google Scholar 

  27. Staszków, A., Swarcewicz, B., Banasiak, J., Muth, D., Jasiński, M., Stobiecki, M.: LC/MS profiling of flavonoid glycoconjugates isolated from hairy roots, suspension root cell cultures and seedling roots of Medicago truncatula. Metabolomics 7, 604–613 (2011)

    Article  Google Scholar 

  28. Abrankó, L., García-Reyes, J.F., Molina-Díaz, A.: Systematic bottom-up approach for flavonoid derivative screening in plant material using liquid chromatography high-resolution mass spectrometry. Anal. Bioanal. Chem. 403, 995–1006 (2012)

    Article  Google Scholar 

  29. Gábor, R., Péter, F., László, A.: Three-step HPLC-ESI-MS/MS procedure for screening and identifying non-target flavonoid derivatives. Int. J. Mass Spectrum. 290, 32–38 (2010)

    Article  Google Scholar 

  30. Jin, Y., Xiao, Y.S., Zhang, F.F., Xue, X.Y., Xu, Q., Liang, X.M.: Systematic screening and characterization of flavonoid glycosides in Carthus tinctorius L. by liquid chromatography/UV diode-array detection/electrospray ionization tandem mass spectrometry. J. Pharm. Biomed. Anal. 46, 418–430 (2008)

    Article  CAS  Google Scholar 

  31. Xiao, W.L., Motley, T.J., Unachukwu, U.J., Lau, C.B., Jiang, B., Hong, F., Leung, P.C., Wang, Q.F., Livingston, P.O., Cassileth, B.R., Kennelly, E.J.: Chemical and genetic assessment of variability in commercial Radix astragali (Astragalus spp.) by ion trap LC-MS and nuclear ribosomal DNA barcoding sequence analyses. J. Agric. Food Chem. 59, 1548–1556 (2011)

    Article  CAS  Google Scholar 

  32. Chu, C., Qi, L.W., Liu, E.H., Li, B., Gao, W., Li, P.: Radix astragali (Astragalus): latest advancements and trends in chemistry, analysis, pharmacology, and pharmacokinetics. Curr. Org. Chem. 14, 1792–1807 (2010)

    Article  CAS  Google Scholar 

  33. Jian, W.Y., Liu, H.F., Zhao, W.P., Jones, E., Zhu, M.S.: Simultaneous screening of glutathione and cyanide adducts using precursor ion and neutral loss scans-dependent product ion spectral acquisition and data mining tools. J. Am. Soc. Mass Spectrom. 23, 964–976 (2012)

    Article  CAS  Google Scholar 

  34. Domon, B., Costello, C.E.: Structure elucidation of glycosphingolipids and gangliosides using high-performance tandem mass spectrometry. Biochemistry 27, 1534–1543 (1988)

    Article  CAS  Google Scholar 

  35. Ma, Y.L., Li, Q.M., VandenHeuvel, H., Claeys, M.: Characterization of flavone and flavonol aglycones by collision-induced dissociation tandem mass spectrometry. Rapid Commun. Mass Spectrom. 11, 1357–1364 (1997)

    Article  CAS  Google Scholar 

  36. Fischbach, M.A., Clardy, J.: One pathway, many products. Nat. Chem. Biol. 3, 353–355 (2007)

    Article  CAS  Google Scholar 

  37. Alberts, P., Stander, M.A., de Villiers, A.: Advanced ultrahigh pressure liquid chromatography-tandem mass spectrometric methods for the screening of red wine anthocyanins and derived pigments. J. Chromatogr. A 1235, 92–102 (2012)

    Article  CAS  Google Scholar 

  38. Kazuno, S., Yanagida, M., Shindo, N., Murayama, K.: Mass spectrometric identification and quantification of glycosyl flavonoids, including dihydrochalcones with neutral loss scan mode. Anal. Biochem. 15, 182–192 (2005)

    Article  Google Scholar 

  39. Tsimogiannis, D., Samiotaki, M., Panayotou, G., Oreopoulou, V.: Characterization of flavonoid subgroups and hydroxyl substitution by HPLC-MS/MS. Molecules 12, 593–606 (2007)

    Article  CAS  Google Scholar 

  40. Cuycken, F., Claeys, M.: Mass spectrometry in the structural analysis of flavonoids. J. Mass Spectrom. 39, 1–15 (2004)

    Article  Google Scholar 

  41. Alcalde-Eon, C., Escribano-Bailón, M.T., Santos-Buelga, C., Rivas-Gonzalo, J.C.: Changes in the detailed pigment composition of red wine during maturity and ageing. A comprehensive study. Anal. Chim. Acta. 563, 238–254 (2006)

    Article  CAS  Google Scholar 

  42. Lin, L.Z., He, X.G., Lindenmaier, M., Nolan, G., Yang, J., Cleary, M., Qiu, S.X., Cordell, G.A.: Liquid chromatography-electrospray ionization mass spectrometry study of the flavonoids of the roots of Astragalus mongholicus and A. membranaceus. J. Chromatogr. A 876, 87–95 (2000)

    Article  CAS  Google Scholar 

  43. Abad-García, B., Garmón-Lobato, S., Berrueta, L.A., Gallo, B., Vicente, F.: On-line characterization of 58 phenolic compounds in citrus fruit juices from Spanish cultivars by high-performance liquid chromatography with photodiode-array detection coupled to electrospray ionization triple quadrupole mass spectrometry. Talanta 99, 213–224 (2012)

    Article  Google Scholar 

  44. Caristi, C., Bellocco, E., Gargiulli, C., Toscano, G., Leuzzi, U.: Flavone-di-C-glycosides in citrus juices from Southern Italy. Food Chem. 95, 431–437 (2006)

    Article  CAS  Google Scholar 

  45. Food and Drug Administration, Guidance for Industry Guidance: Bioanalytical Method Validation. US Department of Health and Human Services, FDA, Center for Drug Evaluation and Research, Rockville (2001)

    Google Scholar 

  46. Abad-Garcia, B., Garmon-Lobato, S., Berrueta, L.A., Gallo, B., Vicente, F.: New features on the fragmentation and differentiation of C-glycosidic flavone isomers by positive electrospray ionization and triple quadrupole mass spectrometry. Rapid Commun. Mass Spectrom. 22, 1834–1842 (2008)

    Article  CAS  Google Scholar 

  47. Guo, X.F., Yue, Y.D., Tang, F., Wang, J., Yao, X., Sun, J.: A comparison of C-glycosidic flavonoid isomers by electrospray ionization quadrupole time-of-flight tandem mass spectrometry in negative and positive ion mode. Int. J. Mass Spectrom. 333, 59–66 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the Science and Technology Development Fund of Macao SAR (ref. no. 043/2011/A2), and the Research Committee of University of Macau (ref. no. MYRG207(Y2-L4)-ICMS11-YR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ru Yan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 968 kb)

ESM 2

(PDF 474 kb)

ESM 3

(PDF 1629 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, Z., Lin, G., Ye, Y. et al. A Generic Multiple Reaction Monitoring Based Approach for Plant Flavonoids Profiling Using a Triple Quadrupole Linear Ion Trap Mass Spectrometry. J. Am. Soc. Mass Spectrom. 25, 955–965 (2014). https://doi.org/10.1007/s13361-014-0863-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-014-0863-6

Key words

Navigation