Skip to main content
Log in

Fragmentation Characteristics of Deprotonated N-linked Glycopeptides: Influences of Amino Acid Composition and Sequence

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

Glycopeptide structural analysis using tandem mass spectrometry is becoming a common approach for elucidating site-specific N-glycosylation. The analysis is generally performed in positive-ion mode. Therefore, fragmentation of protonated glycopeptides has been extensively investigated; however, few studies are available on deprotonated glycopeptides, despite the usefulness of negative-ion mode analysis in detecting glycopeptide signals. Here, large sets of glycopeptides derived from well-characterized glycoproteins were investigated to understand the fragmentation behavior of deprotonated N-linked glycopeptides under low-energy collision-induced dissociation (CID) conditions. The fragment ion species were found to be significantly variable depending on their amino acid sequence and could be classified into three types: (i) glycan fragment ions, (ii) glycan-lost fragment ions and their secondary cleavage products, and (iii) fragment ions with intact glycan moiety. The CID spectra of glycopeptides having a short peptide sequence were dominated by type (i) glycan fragments (e.g., 2,4AR, 2,4AR-1, D, and E ions). These fragments define detailed structural features of the glycan moiety such as branching. For glycopeptides with medium or long peptide sequences, the major fragments were type (ii) ions (e.g., [peptide + 0,2X0–H] and [peptide–NH3–H]). The appearance of type (iii) ions strongly depended on the peptide sequence, and especially on the presence of Asp, Asn, and Glu. When a glycosylated Asn is located on the C-terminus, an interesting fragment having an Asn residue with intact glycan moiety, [glycan + Asn–36], was abundantly formed. Observed fragments are reasonably explained by a combination of existing fragmentation rules suggested for N-glycans and peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Scheme 1
Scheme 2

Similar content being viewed by others

References

  1. Apweiler, R., Hermjakob, H., Sharon, N.: On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim. Biophys. Acta 1473, 4–8 (1999)

    Article  CAS  Google Scholar 

  2. Parodi, A.J.: Reglucosylation of glycoproteins and quality control of glycoprotein folding in the endoplasmic reticulum of yeast cells. Biochim. Biophys. Acta 1426, 287–295 (1999)

    Article  CAS  Google Scholar 

  3. Fukuda, M., Sasaki, H., Fukuda, M.N.: Structure and role of carbohydrate in human erythropoietin. Adv. Exp. Med. Biol. 271, 53–67 (1989)

    Article  CAS  Google Scholar 

  4. Arnold, J.N., Wormald, M.R., Sim, R.B., Rudd, P.M., Dwek, R.A.: The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu. Rev. Immunol. 25, 21–50 (2007)

    Article  CAS  Google Scholar 

  5. Mariño, K., Bones, J., Kattla, J.J., Rudd, P.M.: A systematic approach to protein glycosylation analysis: a path through the maze. Nat. Chem. Biol. 6, 713–723 (2010)

    Article  Google Scholar 

  6. Whitehouse, C.M., Dreyer, R.N., Yamashita, M., Fenn, J.B.: Electrospray interface for liquid chromatographs and mass spectrometers. Anal. Chem. 57, 675–679 (1985)

    Article  CAS  Google Scholar 

  7. Fenn, J.B., Mann, M., Meng, C., Wong, S., Whitehouse, C.M.: Electrospray ionization for mass spectrometry of large biomolecules. Science 246, 64–71 (1989)

    Article  CAS  Google Scholar 

  8. Tanaka, K., Waki, H., Ido, Y., Akita, S., Yoshida, Y., Yoshida, T.: Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2, 151–153 (1988)

    Google Scholar 

  9. Karas, M., Bachmann, D., Bahr, U., Hillenkamp, F.: Matrix-assisted ultraviolet laser desorption of non-volatile compounds. Int. J. Mass Spectrom. Ion Process. 78, 53–68 (1987)

    Article  CAS  Google Scholar 

  10. Karas, M., Hillenkamp, F.: Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal. Chem. 60, 2299–2301 (1988)

    Article  CAS  Google Scholar 

  11. Dodds, E.D.: Gas-phase dissociation of glycosylated peptide ions. Mass Spectrom. Rev. 31, 666–682 (2012)

    Article  CAS  Google Scholar 

  12. Wuhrer, M., Catalina, M.I., Deelder, A.M., Hokke, C.H.: Glycoproteomics based on tandem mass spectrometry of glycopeptides. J. Chromatogr. B 849, 115–128 (2007)

    Article  CAS  Google Scholar 

  13. Seipert, R.R., Dodds, E.D., Clowers, B.H., Beecroft, S.M., German, J.B., Lebrilla, C.B.: Factors that influence fragmentation behavior of N-linked glycopeptide ions. Anal. Chem. 80, 3684–3692 (2008)

    Article  CAS  Google Scholar 

  14. Zubarev, R.A., Kelleher, N.L., McLafferty, F.W.: Electron capture dissociation of multiply charged protein cations. A nonergodic process. J. Am. Chem. Soc. 120, 3265–3266 (1998)

    Article  CAS  Google Scholar 

  15. Syka, J.E.P., Coon, J.J., Schroeder, M.J., Shabanowitz, J., Hunt, D.F.: Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc. Natl. Acad. Sci. U. S. A. 101, 9528–9533 (2004)

    Article  CAS  Google Scholar 

  16. An, H.J., Peavy, T.R., Hedrick, J.L., Lebrilla, C.B.: Determination of N-glycosylation sites and site heterogeneity in glycoproteins. Anal. Chem. 75, 5628–5637 (2003)

    Article  CAS  Google Scholar 

  17. Yu, Y.Q., Fournier, J., Gilar, M., Gebler, J.C.: Identification of N-linked glycosylation sites using glycoprotein digestion with pronase prior to MALDI tandem time-of-flight mass spectrometry. Anal. Chem. 79, 1731–1738 (2007)

    Article  CAS  Google Scholar 

  18. Dodds, E.D., Seipert, R.R., Clowers, B.H., German, J.B., Lebrilla, C.B.: Analytical performance of immobilized pronase for glycopeptide footprinting and implications for surpassing reductionist glycoproteomics. J. Proteome Res. 8, 502–512 (2009)

    Article  CAS  Google Scholar 

  19. Nwosu, C.C., Seipert, R.R., Strum, J.S., Hua, S.S., An, H.J., Zivkovic, A.M., German, B.J., Lebrilla, C.B.: Simultaneous and extensive site-specific N- and O-glycosylation analysis in protein mixtures. J. Proteome Res. 10, 2612–2624 (2011)

    Article  CAS  Google Scholar 

  20. Larsen, M.R., Højrup, P., Roepstorff, P.: Characterization of gel-separated glycoproteins using two-step proteolytic digestion combined with sequential microcolumns and mass spectrometry. Mol. Cell. Proteomics 4, 107–119 (2005)

    Article  CAS  Google Scholar 

  21. Zauner, G., Koeleman, C.A.M., Deelder, A.M., Wuhrer, M.: Protein glycosylation analysis by HILIC-LC-MS of proteinase K-generated N- and O-glycopeptides. J. Sep. Sci. 33, 903–910 (2010)

    Article  CAS  Google Scholar 

  22. Nwosu, C.C., Strum, J.S., An, H.J., Lebrilla, C.B.: Enhanced detection and identification of glycopeptides in negative ion mode mass spectrometry. Anal. Chem. 82, 9654–9662 (2010)

    Article  CAS  Google Scholar 

  23. Deguchi, K., Ito, H., Takegawa, Y., Shinji, N., Nakagawa, H., Nishimura, S.-I.: Complementary structural information of positive- and negative-ion MSn spectra of glycopeptides with neutral and sialylated N-glycans. Rapid Commun. Mass Spectrom. 20, 741–746 (2006)

    Article  CAS  Google Scholar 

  24. Ito, H., Takegawa, Y., Deguchi, K., Nagai, S., Nakagawa, H., Shinohara, Y., Nishimura, S.-I.: Direct structural assignment of neutral and sialylated N-glycans of glycopeptides using collision-induced dissociation MSn spectral matching. Rapid Commun. Mass Spectrom. 20, 3557–3565 (2006)

    Article  CAS  Google Scholar 

  25. Amano, J., Nishikaze, T., Tougasaki, F., Jinmei, H., Sugimoto, I., Sugawara, S., Fujita, M., Osumi, K., Mizuno, M.: Derivatization with 1-pyrenyldiazomethane enhances ionization of glycopeptides but not peptides in matrix-assisted laser desorption/ionization mass spectrometry. Anal. Chem. 82, 8738–8743 (2010)

    Article  CAS  Google Scholar 

  26. Irungu, J., Dalpathado, D.S., Go, E.P., Jiang, H., Ha, H.-V., Bousfield, G.R., Desaire, H.: Method for characterizing sulfated glycoproteins in a glycosylation site-specific fashion, using ion pairing and tandem mass spectrometry. Anal. Chem. 78, 1181–1190 (2006)

    Article  CAS  Google Scholar 

  27. Irungu, J., Go, E.P., Dalpathado, D.S., Desaire, H.: Simplification of mass spectral analysis of acidic glycopeptides using GlycoPep ID. Anal. Chem. 79, 3065–3074 (2007)

    Article  CAS  Google Scholar 

  28. Nishikaze, T., Kawabata, S., Tanaka, K.: Boron forms unexpected glycopeptide derivatives during MALDI-MS experiment. J. Mass Spectrom. 48, 1005–1009 (2013)

    Article  CAS  Google Scholar 

  29. Rebecchi, K.R., Go, E.P., Xu, L., Woodin, C.L., Mure, M., Desaire, H.: Protein sequence coverage and post-translational modifications analysis of recombinant glycoproteins: application to the characterization of human lysyl oxidase. Anal. Chem. 83, 8484–8491 (2011)

    Article  CAS  Google Scholar 

  30. Wada, Y., Tajiri, M., Yoshida, S.: Hydrophilic affinity isolation and MALDI multiple-stage tandem mass spectrometry of glycopeptides for glycoproteomics. Anal. Chem. 76, 6560–6565 (2004)

    Article  CAS  Google Scholar 

  31. Rappsilber, J., Mann, M., Ishihama, Y.: Protocol for micro-purification, enrichment, prefractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2, 1896–1906 (2007)

    Article  CAS  Google Scholar 

  32. Kaneshiro, K., Fukuyama, Y., Iwamoto, S., Sekiya, S., Tanaka, K.: Highly sensitive MALDI analyses of glycans by a new aminoquinoline-labeling method using 3-aminoquinoline/α-cyano-4-hydroxycinnamic acid liquid matrix. Anal. Chem. 83, 3663–3667 (2011)

    Article  CAS  Google Scholar 

  33. Nishikaze, T., Fukuyama, Y., Kawabata, S., Tanaka, K.: Sensitive analyses of neutral N-glycans using anion-doped liquid matrix G3CA by negative-ion matrix-assisted laser desorption/ionization mass spectrometry. Anal. Chem. 84, 6097–6103 (2012)

    Google Scholar 

  34. Harvey, D.J.: Fragmentation of negative ions from carbohydrates: part 1. Use of nitrate and other anionic adducts for the production of negative ion electrospray spectra from N-linked carbohydrates. J. Am. Soc. Mass Spectrom. 16, 622–630 (2005)

    Google Scholar 

  35. Harvey, D.J.: Fragmentation of negative ions from carbohydrates: part 2. Fragmentation of high-mannose N-linked glycans. J. Am. Soc. Mass Spectrom. 16, 631–646 (2005)

    Google Scholar 

  36. Harvey, D.J.: Fragmentation of negative ions from carbohydrates: part 3. Fragmentation of hybrid and complex N-linked glycans. J. Am. Soc. Mass Spectrom. 16, 647–659 (2005)

    Google Scholar 

  37. Harvey, D.J., Jaeken, J., Butler, M., Armitage, A.J., Rudd, P.M., Dwek, R.A.: Fragmentation of negative ions from N-linked carbohydrates, part 4. Fragmentation of complex glycans lacking substitution on the 6-antenna. J. Mass Spectrom. 45, 528–535 (2010)

    Article  CAS  Google Scholar 

  38. Harvey, D.J., Rudd, P.M.: Fragmentation of negative ions from N-linked carbohydrates. Part 5: anionic N-linked glycans. Int. J. Mass Spectrom. 305, 120–130 (2011)

    Article  CAS  Google Scholar 

  39. Domon, B., Costello, C.E.: A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconj. J. 5, 397–409 (1988)

    Article  CAS  Google Scholar 

  40. Schlosser, A., Lehmann, W.D.: Five-membered ring formation in unimolecular reactions of peptides: a key structural element controlling low-energy collision-induced dissociation of peptides. J. Mass Spectrom. 35, 1382–1390 (2000)

    Article  CAS  Google Scholar 

  41. Harrison, A.G.: Sequence-specific fragmentation of deprotonated peptides containing H or alkyl side chains. J. Am. Soc. Mass Spectrom. 12, 1–13 (2001)

    Article  CAS  Google Scholar 

  42. Bowie, J.H., Brinkworth, C.S., Dua, S.: Collision-induced fragmentations of the (M–H) parent anions of underivatized peptides: an aid to structure determination and some unusual negative ion cleavages. Mass Spectrom. Rev. 21, 87–107 (2002)

    Article  CAS  Google Scholar 

  43. Harrison, A.G.: Effect of phenylalanine on the fragmentation of deprotonated peptides. J. Am. Soc. Mass Spectrom. 13, 1242–1249 (2002)

    Article  CAS  Google Scholar 

  44. Harrison, A.G., Young, A.B.: Fragmentation reactions of deprotonated peptides containing aspartic acid. Int. J. Mass Spectrom. 255–256, 111–122 (2006)

    Article  Google Scholar 

  45. Men, L., Wang, Y.: Fragmentation of the deprotonated ions of peptides containing cysteine, cysteine sulfinic acid, cysteine sulfonic acid, aspartic acid, and glutamic acid. Rapid Commun. Mass Spectrom. 20, 777–784 (2006)

    Article  CAS  Google Scholar 

  46. Bilusich, D., Bowie, J.H.: Fragmentation of (M–H) anions of underivatized peptides. Part 2: characteristic cleavages of Ser and Cys and of disulfides and other post-translational modifications, together with some unusual internal processes. Mass Spectrom. Rev. 28, 20–34 (2009)

    Article  CAS  Google Scholar 

  47. Nishikaze, T., Kaneshiro, K., Kawabata, S., Tanaka, K.: Structural analysis of N-glycans by the glycan-labeling method using 3-aminoquinoline-based liquid matrix in negative-ion MALDI-MS. Anal. Chem. 84, 9453–9461 (2012)

    Article  CAS  Google Scholar 

  48. Li, Z., Yalcin, T., Cassady, C.J.: C-terminal amino acid residue loss for deprotonated peptide ions containing glutamic acid, aspartic acid, or serine residues at the C-terminus. J. Mass Spectrom. 41, 939–949 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Sekiya for his valuable comments and suggestions. This research is supported by the Japan Society for the Promotion of Science (JSPS) through its Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Nishikaze.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 227 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishikaze, T., Kawabata, Si. & Tanaka, K. Fragmentation Characteristics of Deprotonated N-linked Glycopeptides: Influences of Amino Acid Composition and Sequence. J. Am. Soc. Mass Spectrom. 25, 988–998 (2014). https://doi.org/10.1007/s13361-014-0854-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-014-0854-7

Key words

Navigation