Skip to main content
Log in

Insights into the Binding Sites of Organometallic Ruthenium Anticancer Compounds on Peptides Using Ultra-High Resolution Mass Spectrometry

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

The binding sites of two ruthenium(II) organometallic complexes of the form [(η6-arene)Ru(N,N)Cl]+, where arene/N,N = biphenyl (bip)/bipyridine (bipy) for complex AH076, and biphenyl (bip)/o-phenylenediamine (o-pda) for complex AH078, on the peptides angiotensin and bombesin have been investigated using Fourier transform ion cyclotron resonance (FTICR) mass spectrometry. Fragmentation was performed using collisionally activated dissociation (CAD), with, in some cases, additional data being provided by electron capture dissociation (ECD). The primary binding sites were identified as methionine and histidine, with further coordination to phenylalanine, potentially through a π-stacking interaction, which has been observed here for the first time. This initial peptide study was expanded to investigate protein binding through reaction with insulin, on which the binding sites proposed are histidine, glutamic acid, and tyrosine. Further reaction of the ruthenium complexes with the oxidized B chain of insulin, in which two cysteine residues are oxidized to cysteine sulfonic acid (Cys-SO3H), and glutathione, which had been oxidized with hydrogen peroxide to convert the cysteine to cysteine sulfonic acid, provided further support for histidine and glutamic acid binding, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Ang, W.H., Dyson, P.J.: Classical and non-classical ruthenium-based anticancer drugs: towards targeted chemotherapy. Eur. J. Inorg. Chem. 20, 4003–4018 (2006).

    Google Scholar 

  2. Ivanov, A.I., Christodoulou, J., Parkinson, J.A., Barnham, K.J., Tucker, A., Woodrow, J., Sadler, P.J.: Cisplatin binding sites on human albumin. J. Biol. Chem. 273, 14721–14730 (1998)

    Article  CAS  Google Scholar 

  3. Zhao, T., King, F.L.: A mass spectrometric comparison of the interactions of cisplatin and transplatin with myoglobin. J. Inorg. Biochem. 104, 186–192 (2010)

    Article  CAS  Google Scholar 

  4. Gibson, D., Costello, C.E.: A mass spectral study of the binding of the anticancer drug cisplatin to ubiquitin. Eur. Mass Spectrom. 5, 501–510 (1999)

    Article  CAS  Google Scholar 

  5. Moreno-Gordaliza, E., Canas, B., Palacios, M.A., Gomez-Gomez, M.M.: Top-down mass spectrometric approach for the full characterization of insulin-cisplatin adducts. Anal. Chem. 81, 3507–3516 (2009)

    Article  CAS  Google Scholar 

  6. Allardyce, C.S., Dyson, P.J., Coffey, J., Johnson, N.: Determination of drug binding sites to proteins by electrospray ionization mass spectrometry: the interaction of cisplatin with transferrin. Rapid Commun. Mass Spectrom. 16, 933–935 (2002)

    Article  CAS  Google Scholar 

  7. Khalaila, I., Allardyce, C.S., Verma, C.S., Dyson, P.J.: A mass spectrometric and molecular modelling study of cisplatin binding to transferrin. Chem. BioChem. 6, 1788–1795 (2005)

    CAS  Google Scholar 

  8. Li, H.L., Zhao, Y., Phillips, H.I.A., Qi, Y.L., Lin, T.Y., Sadler, P.J., O’Connor, P.B.: Mass spectrometry evidence for cisplatin as a protein cross-linking reagent. Anal. Chem. 83, 5369–5376 (2011)

    Article  CAS  Google Scholar 

  9. Li, H., Lin, T.-Y., Van Orden, S.L., Zhao, Y., Barrow, M.P., Pizarro, A.M., Qi, Y., Sadler, P.J., O’Connor, P.B.: Use of top-down and bottom-up Fourier transform ion cyclotron resonance mass spectrometry for mapping calmodulin sites modified by platinum anticancer drugs. Anal. Chem. 83, 9507–9515 (2011)

    Article  CAS  Google Scholar 

  10. Rademaker-Lakhai, J.M., van den Bongard, D., Pluim, D., Beijnen, J.H., Schellens, J.H.M.: A phase I and pharmacological study with imidazolium-trans-DMSO-imidazole-tetrachlororuthenate, a novel ruthenium anticancer agent. Clin. Cancer Res. 10, 3717–3727 (2004)

    Article  CAS  Google Scholar 

  11. Alessio, E., Mestroni, G., Bergamo, A., Sava, G.: Ruthenium antimetastatic agents. Curr. Top. Med. Chem. 4, 1525–1535 (2004)

    Article  CAS  Google Scholar 

  12. Jakupec, M.A., Galanski, M., Arion, V.B., Hartinger, C.G., Keppler, B.K.: Antitumor metal compounds: more than theme and variations. Dalton Trans. 2, 183–194 (2008).

    Google Scholar 

  13. Groessl, M., Tsybin, Y.: O., Hartinger, C.G., Keppler, B.K., Dyson, P.J.: Ruthenium versus platinum: interactions of anticancer metallodrugs with duplex oligonucleotides characterized by electrospray ionization mass spectrometry. J. Biol. Inorg. Chem. 15, 677–688 (2010)

    Article  CAS  Google Scholar 

  14. Kratz, F., Hartmann, M., Keppler, B., Messori, L.: The binding-properties of 2 anticancer ruthenium(III) complexes to apotransferrin. J. Biol. Chem. 269, 2581–2588 (1994)

    CAS  Google Scholar 

  15. Yan, Y.K., Melchart, M., Habtemariam, A., Sadler, P.J.: Organometallic chemistry, biology, and medicine: ruthenium arene anticancer complexes. Chem. Commun. 38, 4764–4776 (2005).

    Google Scholar 

  16. Bugarcic, T., Habtemariam, A., Deeth, R.J., Fabbiani, F.P.A., Parsons, S., Sadler, P.J.: Ruthenium(II) arene anticancer complexes with redox-active diamine ligands. Inorg. Chem. 48, 9444–9453 (2009)

    Article  CAS  Google Scholar 

  17. Aird, R.E., Cummings, J., Ritchie, A.A., Muir, M., Morris, R.E., Chen, H., Sadler, P.J., Jodrell, D.I.: In vitro and in vivo activity and cross resistance profiles of novel ruthenium (II) organometallic arene complexes in human ovarian cancer. Br. J. Cancer 86, 1652–1657 (2002)

    Article  CAS  Google Scholar 

  18. Morris, R.E., Aird, R.E., Murdoch, P.D., Chen, H.M., Cummings, J., Hughes, N.D., Parsons, S., Parkin, A., Boyd, G., Jodrell, D.I., Sadler, P.J.: Inhibition of cancer cell growth by ruthenium(II) arene complexes. J. Med. Chem. 44, 3616–3621 (2001)

    Article  CAS  Google Scholar 

  19. Habtemariam, A., Melchart, M., Fernandez, R., Parsons, S., Oswald, I.D.H., Parkin, A., Fabbiani, F.P.A., Davidson, J.E., Dawson, A., Aird, R.E., Jodrell, D.I., Sadler, P.J.: Structure–activity relationships for cytotoxic ruthenium(II) arene complexes containing N, N-, N, O-, and O,O-chelating ligands. J. Med. Chem. 49, 6858–6868 (2006)

    Article  CAS  Google Scholar 

  20. Comisarow, M.B., Marshall, A.G.: Fourier transform ion cyclotron resonance spectroscopy. Chem. Phys. Lett. 25, 282–283 (1974)

    Article  CAS  Google Scholar 

  21. Wang, F.Y., Bella, J., Parkinson, J.A., Sadler, P.J.: Competitive reactions of a ruthenium arene anticancer complex with histidine, cytochrome c, and an oligonucleotide. J. Biol. Inorg. Chem. 10, 147–155 (2005)

    Article  CAS  Google Scholar 

  22. Jennings, K.R.: Collision-induced decompositions of aromatic molecular ions. Int. J. Mass Spectrom. Ion Phys. 1, 227–235 (1968)

    Article  CAS  Google Scholar 

  23. Senko, M.W., Speir, J.P., McLafferty, F.W.: Collisional activation of large multiply charged ions using fourier transform mass spectrometry. Anal. Chem. 66, 2801–2808 (1994)

    Article  CAS  Google Scholar 

  24. Zubarev, R.A., Kelleher, N.L., McLafferty, F.W.: Electron capture dissociation of multiply charged protein cations. A nonergodic process. J. Am. Chem. Soc. 120, 3265–3266 (1998)

    Article  CAS  Google Scholar 

  25. Zubarev, R.A., Kruger, N.A., Fridriksson, E.K., Lewis, M.A., Horn, D.M., Carpenter, B.K., McLafferty, F.W.: Electron capture dissociation of gaseous multiply-charged proteins is favored at disulfide bonds and other sites of high hydrogen atom affinity. J. Am. Chem. Soc. 121, 2857–2862 (1999)

    Article  CAS  Google Scholar 

  26. McLafferty, F.W., Horn, D.M., Breuker, K., Ge, Y., Lewis, M.A., Cerda, B., Zubarev, R.A., Carpenter, B.K.: Electron capture dissociation of gaseous multiply charged ions by Fourier-transform ion cyclotron resonance. J. Am. Soc. Mass Spectrom. 12, 245–249 (2001)

    Article  CAS  Google Scholar 

  27. Syrstad, E.A., Turecek, F.: Toward a general mechanism of electron capture dissociation. J. Am. Soc. Mass Spectrom. 16, 208–224 (2005)

    Article  CAS  Google Scholar 

  28. Simons, J.: Mechanisms for S–S and N–C(alpha) bond cleavage in peptide ECD and ETD mass spectrometry. Chem. Phys. Lett. 484, 81–95 (2010)

    Article  CAS  Google Scholar 

  29. Iavarone, A.T., Paech, K., Williams, E.R.: Effects of charge state and cationizing agent on the electron capture dissociation of a peptide. Anal. Chem. 76, 2231–2238 (2004)

    Article  CAS  Google Scholar 

  30. Fung, Y.M.E., Liu, H.C., Chan, T.W.D.: Electron capture dissociation of peptides metalated with alkaline-earth metal ions. J. Am. Soc. Mass Spectrom. 17, 757–771 (2006)

    Article  CAS  Google Scholar 

  31. Kleinnijenhuis, A.J., Mihalca, R., Heeren, R.M.A., Heck, A.J.R.: Atypical behavior in the electron capture induced dissociation of biologically relevant transition metal ion complexes of the peptide hormone oxytocin. Int. J. Mass Spectrom. 253, 217–224 (2006)

    Article  CAS  Google Scholar 

  32. Liu, H.C., Hakansson, K.: Divalent metal ion–peptide interactions probed by electron capture dissociation of trications. J. Am. Soc. Mass Spectrom. 17, 1731–1741 (2006)

    Article  CAS  Google Scholar 

  33. Kaczorowska, M.A., Hotze, A.C.G., Hannon, M.J., Cooper, H.J.: Electron capture dissociation mass spectrometry of metallo-supramolecular complexes. J. Am. Soc. Mass Spectrom. 21, 300–309 (2010)

    Article  CAS  Google Scholar 

  34. Turecek, F., Jones, J.W., Holm, A.I.S., Panja, S., Nielsen, S.B., Hvelplund, P.: Transition metals as electron traps. I. Structures, energetics, electron capture, and electron-transfer-induced dissociations of ternary copper-peptide complexes in the gas phase. J. Mass Spectrom. 44, 707–724 (2009)

    Article  CAS  Google Scholar 

  35. Turecek, F., Holm, A.I.S., Panja, S., Nielsen, S.B., Hvelplund, P.: Transition metals as electron traps. II. Structures, energetics, and electron transfer dissociations of ternary Co, Ni, and Zn-peptide complexes in the gas phase. J. Mass Spectrom 44, 1518–1531 (2009)

    Article  CAS  Google Scholar 

  36. Chen, X.F., Chan, W.Y.K., Wong, P.S., Yeung, H.S., Chan, T.W.D.: Formation of peptide radical cations (M(+center dot)) in electron capture dissociation of peptides adducted with group IIB metal ions. J. Am. Soc. Mass Spectrom. 22, 233–244 (2011)

    Article  CAS  Google Scholar 

  37. Williams, J.P., Brown, J.M., Campuzano, I., Sadler, P.J.: Identifying drug metallation sites on peptides using electron transfer dissociation (ETD), collision induced dissociation (CID), and ion mobility-mass spectrometry (IM-MS). Chem. Commun. 46, 5458–5460 (2010)

    Article  CAS  Google Scholar 

  38. McNae, I.W., Fishburne, K., Habtemariam, A., Hunter, T.M., Melchart, M., Wang, F.Y., Walkinshaw, M.D., Sadler, P.J.: Half-sandwich arene ruthenium(II)-enzyme complex. Chem. Commun. 16, 1786–1787 (2004).

    Google Scholar 

  39. Piccioli, F., Sabatini, S., Messori, L., Orioli, P., Hartinger, C.G., Keppler, B.K.: A comparative study of adduct formation between the anticancer ruthenium(III) compound HInd trans-[RuCl4(Ind)2] and serum proteins. J. Inorg. Biochem. 98, 1135–1142 (2004)

    Article  CAS  Google Scholar 

  40. Hartinger, C.G., Casini, A., Duhot, C., Tsybin, Y.O., Messori, L., Dyson, P.J.: Stability of an organometallic ruthenium-ubiquitin adduct in the presence of glutathione: relevance to antitumor activity. J. Inorg. Biochem. 102, 2136–2141 (2008)

    Article  CAS  Google Scholar 

  41. Casini, A., Gabbiani, C., Michelucci, E., Pieraccini, G., Moneti, G., Dyson, P.J., Messori, L.: Exploring metallodrug–protein interactions by mass spectrometry: comparisons between platinum coordination complexes and an organometallic ruthenium compound. J. Biol. Inorg. Chem. 14, 761–770 (2009)

    Article  CAS  Google Scholar 

  42. Casini, A., Karotki, A., Gabbiani, C., Rugi, F., Vasak, M., Messori, L., Dyson, P.J.: Reactivity of an antimetastatic organometallic ruthenium compound with metallothionein-2: relevance to the mechanism of action. Metallomics 1, 434–441 (2009)

    Article  CAS  Google Scholar 

  43. Hu, W.B., Luo, Q., Ma, X.Y., Wu, K., Liu, J.A., Chen, Y., Xiong, S.X., Wang, J.P., Sadler, P.J., Wang, F.Y.: Arene control over thiolate to sulfinate oxidation in albumin by organometallic ruthenium anticancer complexes. Chem. Eur. J. 15, 6586–6594 (2009)

    Article  CAS  Google Scholar 

  44. Meier, S.M., Hanif, M., Kandioller, W., Keppler, B.K., Hartinger, C.G.: Biomolecule binding versus anticancer activity: reactions of Ru(arene) (thio)pyr-(id)one compounds with amino acids and proteins. J. Inorg. Biochem. 108, 91–95 (2012)

    Article  CAS  Google Scholar 

  45. Casini, A., Mastrobuoni, G., Ang, W.H., Gabbiani, C., Pieraccini, G., Moneti, G., Dyson, P.J., Messori, L.: ESI-MS characterization of protein adducts of anticancer ruthenium(II)-arene PTA (RAPTA) complexes. Chem. Med. Chem. 2, 631–635 (2007)

    Article  CAS  Google Scholar 

  46. Chatterjee, S., Kundu, S., Bhattacharyya, A., Hartinger, C., Dyson, P.: The ruthenium(II)–arene compound RAPTA-C induces apoptosis in EAC cells through mitochondrial and p53–JNK pathways. J. Biol. Inorg. Chem. 13, 1149–1155 (2008)

    Article  CAS  Google Scholar 

  47. Wu, B., Ong, M.S., Groessl, M., Adhireksan, Z., Hartinger, C.G., Dyson, P.J., Davey, C.A.: A ruthenium antimetastasis agent forms specific histone protein adducts in the nucleosome core. Chem. Eur. J. 17, 3562–3566 (2011)

    Article  CAS  Google Scholar 

  48. Wang, Y., Vivekananda, S., Men, L., Zhang, Q.: Fragmentation of protonated ions of peptides containing cysteine, cysteine sulfinic acid, and cysteine sulfonic acid. J. Am. Soc. Mass Spectrom. 15, 697–702 (2004)

    Article  Google Scholar 

  49. Claiborne, A., Yeh, J.I., Mallett, T.C., Luba, J., Crane, E.J., Charrier, V., Parsonage, D.: Protein-sulfenic acids: diverse roles for an unlikely player in enzyme catalysis and redox regulation. Biochemistry 38, 15407–15416 (1999)

    Article  CAS  Google Scholar 

  50. Chang, Y.-C., Huang, C.-N., Lin, C.-H., Chang, H.-C., Wu, C.-C.: Mapping protein cysteine sulfonic acid modifications with specific enrichment and mass spectrometry: An integrated approach to explore the cysteine oxidation. Proteomics 10, 2961–2971 (2010)

    Article  CAS  Google Scholar 

  51. Winterbourn, C.C., Hampton, M.B.: Thiol chemistry and specificity in redox signaling. Free Radic. Biol. Med. 45, 549–561 (2008)

    Article  CAS  Google Scholar 

  52. Caravatti, P., Allemann, M.: The ‘infinity cell’: a new trapped-ion cell with radiofrequency covered trapping electrodes for Fourier transform ion cyclotron resonance mass spectrometry. Org. Mass Spectrom. 26, 514–518 (1991)

    Article  CAS  Google Scholar 

  53. Williams, J.P., Lough, J.A., Campuzano, I., Richardson, K., Sadler, P.J.: Use of ion mobility mass spectrometry and a collision cross-section algorithm to study an organometallic ruthenium anticancer complex and its adducts with a DNA oligonucleotide. Rapid Commun. Mass Spectrom. 23, 3563–3569 (2009)

    Article  CAS  Google Scholar 

  54. Hu, P., Loo, J.A.: Gas-phase coordination properties of Zn2+, Cu2+, Ni2+, and Co2+ with histidine-containing peptides. J. Am. Chem. Soc. 117, 11314–11319 (1995)

    Article  CAS  Google Scholar 

  55. Loo, J.A., Hu, P., Smith, R.D.: Interaction of angiotensin peptides and zinc metal ions probed by electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 5, 959–965 (1994)

    Article  CAS  Google Scholar 

  56. Zubarev, R.A., Horn, D.M., Fridriksson, E.K., Kelleher, N.L., Kruger, N.A., Lewis, M.A., Carpenter, B.K., McLafferty, F.W.: Electron capture dissociation for structural characterization of multiply charged protein cations. Anal. Chem. 72, 563–573 (2000)

    Article  CAS  Google Scholar 

  57. Leymarie, N., Costello, C.E., O’Connor, P.B.: Electron capture dissociation initiates a free radical reaction cascade. J. Am. Chem. Soc. 125, 8949–8958 (2003)

    Article  CAS  Google Scholar 

  58. Belyayev, M.A., Cournoyer, J.J., Lin, C., O’Connor, P.B.: The effect of radical trap moieties on electron capture dissociation spectra of Substance P. J. Am. Soc. Mass Spectrom. 17, 1428–1436 (2006)

    Article  CAS  Google Scholar 

  59. Hong, J., Miao, Y., Miao, R., Yang, G., Tang, H., Guo, Z., Zhu, L.: Binding sites of [Ru(bpy)2(H2O)2](BF4)2 with sulfur- and histidine-containing peptides studied by electrospray ionization mass spectrometry and tandem mass spectrometry. J. Mass Spectrom. 40, 91–99 (2005)

    Article  CAS  Google Scholar 

  60. Schmidbaur, H., Classen, H.G., Helbig, J.: Aspartic and glutamic acid as ligands to alkali and alkaline-earth metals: structural chemistry as related to magnesium therapy. Angew. Chem. Int. Ed. Engl. 29, 1090–1103 (1990)

    Article  Google Scholar 

  61. Sajadi, S.: Metal ion-binding properties of L-glutamic acid and L-aspartic acid, a comparative investigation. Nat. Sci. 2, 85–90 (2010)

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by DTA (EPSRC) for R.H.W. Financial support from the NIH (grant NIH/NIGMS-R01GM078293), the ERC (grant 247450), the Warwick Centre for Analytical Science (EPSRC funded grant EP/F034210/1) and EPSRC (grant BP/G006792) is gratefully acknowledged. Special thanks go to Huilin Li, Pilar Perez Hurtado, Yulin Qi, Dr. David Kilgour, and Tzu-Yung Lin for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter B. O’Connor.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 232 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wills, R.H., Habtemariam, A., Lopez-Clavijo, A.F. et al. Insights into the Binding Sites of Organometallic Ruthenium Anticancer Compounds on Peptides Using Ultra-High Resolution Mass Spectrometry. J. Am. Soc. Mass Spectrom. 25, 662–672 (2014). https://doi.org/10.1007/s13361-013-0819-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-013-0819-2

Key words

Navigation