Skip to main content
Log in

Chemical Derivatization of Peptide Carboxyl Groups for Highly Efficient Electron Transfer Dissociation

  • Focus: Electron Transfer Dissociation: Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

The carboxyl groups of tryptic peptides were derivatized with a tertiary or quaternary amine labeling reagent to generate more highly charged peptide ions that fragment efficiently by electron transfer dissociation (ETD). All peptide carboxyl groups—aspartic and glutamic acid side-chains as well as C-termini—were derivatized with an average reaction efficiency of 99 %. This nearly complete labeling avoids making complex peptide mixtures even more complex because of partially-labeled products, and it allows the use of static modifications during database searching. Alkyl tertiary amines were found to be the optimal labeling reagent among the four types tested. Charge states are substantially higher for derivatized peptides: a modified tryptic digest of bovine serum albumin (BSA) generates ~90% of its precursor ions with z  >  2, compared with less than 40 % for the unmodified sample. The increased charge density of modified peptide ions yields highly efficient ETD fragmentation, leading to many additional peptide identifications and higher sequence coverage (e.g., 70 % for modified versus only 43 % for unmodified BSA). The utility of this labeling strategy was demonstrated on a tryptic digest of ribosomal proteins isolated from yeast cells. Peptide derivatization of this sample produced an increase in the number of identified proteins, a >50 % increase in the sequence coverage of these proteins, and a doubling of the number of peptide spectral matches. This carboxyl derivatization strategy greatly improves proteome coverage obtained from ETD-MS/MS of tryptic digests, and we anticipate that it will also enhance identification and localization of post-translational modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Smith, L.M., Kelleher, N.L.: Proteoform: a single term describing protein complexity. Nat. Methods 10, 186–187 (2013)

    Article  CAS  Google Scholar 

  2. Krusemark, C.J., Frey, B.L., Smith, L.M., Belshaw, P.J.: Complete chemical modification of amine and acid functional groups of peptides and small proteins. Methods Mol. Biol. 753, 77–91 (2011)

    Article  CAS  Google Scholar 

  3. Syka, J.E., Coon, J.J., Schroeder, M.J., Shabanowitz, J., Hunt, D.F.: Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc. Natl. Acad. Sci. U.S.A. 101, 9528–9533 (2004)

    Article  CAS  Google Scholar 

  4. Pitteri, S.J., Chrisman, P.A., Hogan, J.M., McLuckey, S.A.: Electron transfer ion/ion reactions in a three-dimensional quadrupole ion trap: reactions of doubly and triply protonated peptides with SO2*. Anal. Chem. 77, 1831–1839 (2005)

    Article  CAS  Google Scholar 

  5. Good, D.M., Wirtala, M., McAlister, G.C., Coon, J.J.: Performance characteristics of electron transfer dissociation mass spectrometry. Mol. Cell. Proteomics 6, 1942–1951 (2007)

    Article  CAS  Google Scholar 

  6. Wiesner, J., Premsler, T., Sickmann, A.: Application of electron transfer dissociation (ETD) for the analysis of post-translational modifications. Proteomics 8, 4466–4483 (2008)

    Article  CAS  Google Scholar 

  7. Swaney, D.L., McAlister, G.C., Coon, J.J.: Decision tree-driven tandem mass spectrometry for shotgun proteomics. Nat. Methods 5, 959–964 (2008)

    Article  CAS  Google Scholar 

  8. Xia, Y., Gunawardena, H.P., Erickson, D.E., McLuckey, S.A.: Effects of cation charge-site identity and position on electron-transfer dissociation of polypeptide cations. J. Am. Chem. Soc. 129, 12232–12243 (2007)

    Article  CAS  Google Scholar 

  9. Xia, Y., Han, H., McLuckey, S.A.: Activation of intact electron-transfer products of polypeptides and proteins in cation transmission mode ion/ion reactions. Anal. Chem. 80, 1111–1117 (2008)

    Article  CAS  Google Scholar 

  10. Madsen, J.A., Brodbelt, J.S.: Simplifying fragmentation patterns of multiply charged peptides by n-terminal derivatization and electron transfer collision activated dissociation. Anal. Chem. 81, 3645–3653 (2009)

    Article  CAS  Google Scholar 

  11. Ledvina, A.R., Beauchene, N.A., McAlister, G.C., Syka, J.E.P., Schwartz, J.C., Griep-Raming, J., Westphall, M.S., Coon, J.J.: Activated-ion electron transfer dissociation improves the ability of electron transfer dissociation to identify peptides in a complex mixture. Anal. Chem. 82, 10068–10074 (2010)

    Article  CAS  Google Scholar 

  12. Iavarone, A.T., Jurchen, J.C., Williams, E.R.: Supercharged protein and peptide ions formed by electrospray ionization. Anal. Chem. 73, 1455–1460 (2001)

    Article  CAS  Google Scholar 

  13. Lomeli, S.H., Yin, S., Loo, R.R.O., Loo, J.A.: Increasing charge while preserving noncovalent protein complexes for ESI-MS. J. Am. Soc. Mass Spectrom. 20, 593–596 (2009)

    Article  CAS  Google Scholar 

  14. Kjeldsen, F., Giessing, A.M.B., Ingrell, C.R., Jensen, O.N.: Peptide sequencing and characterization of post-translational modifications by enhanced ion-charging and liquid chromatography electron-transfer dissociation tandem mass spectrometry. Anal. Chem. 79, 9243–9252 (2007)

    Article  CAS  Google Scholar 

  15. Thompson, A., Schafer, J., Kuhn, K., Kienle, S., Schwarz, J., Schmidt, G., Neumann, T., Johnstone, R., Mohammed, A.K., Hamon, C.: Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal. Chem. 75, 1895–1904 (2003)

    Article  CAS  Google Scholar 

  16. Ross, P.L., Huang, Y.N., Marchese, J.N., Williamson, B., Parker, K., Hattan, S., Khainovski, N., Pillai, S., Dey, S., Daniels, S., Purkayastha, S., Juhasz, P., Martin, S., Bartlet-Jones, M., He, F., Jacobson, A., Pappin, D.J.: Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteom. 3, 1154–1169 (2004)

    Article  CAS  Google Scholar 

  17. Mirzaei, H., Regnier, F.: Enhancing electrospray ionization efficiency of peptides by derivatization. Anal. Chem. 78, 4175–4183 (2006)

    Article  CAS  Google Scholar 

  18. Chamot-Rooke, J., van der Rest, G., Dalleu, A., Bay, S., Lemoine, J.: The combination of electron capture dissociation and fixed charge derivatization increases sequence coverage for O-glycosylated and O-phosphorylated peptides. J. Am. Soc. Mass Spectrom. 18, 1405–1413 (2007)

    Article  CAS  Google Scholar 

  19. Xiang, F., Ye, H., Chen, R.B., Fu, Q., Li, L.J.: N, N-dimethyl leucines as novel isobaric tandem mass tags for quantitative proteomics and peptidomics. Anal. Chem. 82, 2817–2825 (2010)

    Article  CAS  Google Scholar 

  20. Lu, Y.L., Zhou, X., Stemmer, P.M., Reid, G.E.: Sulfonium ion derivatization, isobaric stable isotope labeling and data dependent CID- and ETD-MS/MS for enhanced phosphopeptide quantitation, identification and phosphorylation site characterization. J. Am. Soc. Mass Spectrom. 23, 577–593 (2012)

    Article  CAS  Google Scholar 

  21. Wuhr, M., Haas, W., McAlister, G.C., Peshkin, L., Rad, R., Kirschner, M.W., Gygi, S.P.: Accurate multiplexed proteomics at the MS2 level using the complement reporter ion cluster. Anal. Chem. 84, 9214–9221 (2012)

    CAS  Google Scholar 

  22. Hennrich, M.L., Boersema, P.J., van den Toorn, H., Mischerikow, N., Heck, A.J., Mohammed, S.: Effect of chemical modifications on peptide fragmentation behavior upon electron transfer induced dissociation. Anal. Chem. 81, 7814–7822 (2009)

    Article  CAS  Google Scholar 

  23. Hsu, J.L., Huang, S.Y., Chow, N.H., Chen, S.H.: Stable-isotope dimethyl labeling for quantitative proteomics. Anal. Chem. 75, 6843–6852 (2003)

    Article  CAS  Google Scholar 

  24. Hsu, J.-L., Huang, S.-Y., Shiea, J.-T., Huang, W.-Y., Chen, S.-H.: Beyond quantitative proteomics: signal enhancement of the a1 ion as a mass tag for peptide sequencing using dimethyl labeling. J. Proteome Res. 4, 101–108 (2005)

    Article  CAS  Google Scholar 

  25. Fu, Q., Li, L.: De novo sequencing of neuropeptides using reductive isotopic methylation and investigation of ESI QTOF MS/MS fragmentation pattern of neuropeptides with N-terminal dimethylation. Anal. Chem. 77, 7783–7795 (2005)

    Article  CAS  Google Scholar 

  26. Melanson, J.E., Avery, S.L., Pinto, D.M.: High-coverage quantitative proteomics using amine-specific isotopic labeling. Proteomics 6, 4466–4474 (2006)

    Article  CAS  Google Scholar 

  27. Boersema, P.J., Raijmakers, R., Lemeer, S., Mohammed, S., Heck, A.J.R.: Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat. Protoc. 4, 484–494 (2009)

    Article  CAS  Google Scholar 

  28. Krusemark, C.J., Ferguson, J.T., Wenger, C.D., Kelleher, N.L., Belshaw, P.J.: Global amine and acid functional group modification of proteins. Anal. Chem. 80, 713–720 (2008)

    Article  CAS  Google Scholar 

  29. Kulevich, S.E., Frey, B.L., Kreitinger, G., Smith, L.M.: Alkylating tryptic peptides to enhance electrospray ionization mass spectrometry analysis. Anal. Chem. 82, 10135–10142 (2010)

    Article  CAS  Google Scholar 

  30. Gygi, S.P., Rist, B., Gerber, S.A., Turecek, F., Gelb, M.H., Aebersold, R.: Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 17, 994–999 (1999)

    Article  CAS  Google Scholar 

  31. Ren, D.Y., Julka, S., Inerowicz, H.D., Regnier, F.E.: Enrichment of cysteine-containing peptides from tryptic digests using a quaternary amine tag. Anal. Chem. 76, 4522–4530 (2004)

    Article  CAS  Google Scholar 

  32. Yi, E.C., Li, X.J., Cooke, K., Lee, H., Raught, B., Page, A., Aneliunas, V., Hieter, P., Goodlett, D.R., Aebersold, R.: Increased quantitative proteome coverage with (13)C/(12)C-based, acid-cleavable isotope-coded affinity tag reagent and modified data acquisition scheme. Proteomics 5, 380–387 (2005)

    Article  CAS  Google Scholar 

  33. Williams Jr., D.K., Meadows, C.W., Bori, I.D., Hawkridge, A.M., Comins, D.L., Muddiman, D.C.: Synthesis, characterization, and application of iodoacetamide derivatives utilized for the ALiPHAT strategy. J. Am. Chem. Soc. 130, 2122–2123 (2008)

    Article  CAS  Google Scholar 

  34. Wang, J., Zhang, J., Arbogast, B., Maier, C.S.: Tandem mass spectrometric characterization of thiol peptides modified by the chemoselective cationic sulfhydryl reagent (4-iodobutyl)triphenylphosphonium. J. Am. Soc. Mass Spectrom. 22, 1771–1783 (2011)

    Article  CAS  Google Scholar 

  35. Ueberheide, B.M., Fenyo, D., Alewood, P.F., Chait, B.T.: Rapid, sensitive analysis of cysteine rich peptide venom components. Proc. Natl. Acad. Sci. U.S.A. 106, 6910–6915 (2009)

    Article  CAS  Google Scholar 

  36. Vasicek, L., Brodbelt, J.S.: Enhanced electron transfer dissociation through fixed charge derivatization of cysteines. Anal. Chem. 81, 7876–7884 (2009)

    Article  CAS  Google Scholar 

  37. Reid, G.E., Roberts, K.D., Simpson, R.J., O'Hair, R.A.: Selective identification and quantitative analysis of methionine containing peptides by charge derivatization and tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 16, 1131–1150 (2005)

    Article  CAS  Google Scholar 

  38. Xu, Y.W., Zhang, L.J., Lu, H.J., Yang, P.Y.: Mass spectrometry analysis of phosphopeptides after peptide carboxy group derivatization. Anal. Chem. 80, 8324–8328 (2008)

    Article  CAS  Google Scholar 

  39. Zhang, L.J., Xu, Y.W., Lu, H.J., Yang, P.Y.: Carboxy group derivatization for enhanced electron-transfer dissociation mass spectrometric analysis of phosphopeptides. Proteomics 9, 4093–4097 (2009)

    Article  CAS  Google Scholar 

  40. Qiao, X.Q., Sun, L.L., Chen, L.F., Zhou, Y.A., Yang, K.G., Liang, Z., Zhang, L.H., Zhang, Y.K.: Piperazines for peptide carboxyl group derivatization: effect of derivatization reagents and properties of peptides on signal enhancement in matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrom. 25, 639–646 (2011)

    Article  CAS  Google Scholar 

  41. Zhang, J.M., Al-Eryani, R., Ball, H.L.: Mass spectrometry analysis of 2-nitrophenylhydrazine carboxy derivatized peptides. J. Am. Soc. Mass Spectrom. 22, 1958–1967 (2011)

    Article  CAS  Google Scholar 

  42. Ko, B.J., Brodbelt, J.S.: Enhanced electron transfer dissociation of peptides modified at C-terminus with fixed charges. J. Am. Soc. Mass Spectrom. 23, 1991–2000 (2012)

    Article  CAS  Google Scholar 

  43. Frey, B.L., Krusemark, C.J., Ledvina, A.R., Coon, J.J., Belshaw, P.J., Smith, L.M.: Ion–ion reactions with fixed-charge modified proteins to produce ions in a single, very high charge state. Int. J. Mass Spectrom. 276, 136–143 (2008)

    Article  CAS  Google Scholar 

  44. Krusemark, C.J., Frey, B.L., Belshaw, P.J., Smith, L.M.: Modifying the charge state distribution of proteins in electrospray ionization mass spectrometry by chemical derivatization. J. Am. Soc. Mass Spectrom. 20, 1617–1625 (2009)

    Article  CAS  Google Scholar 

  45. Inada, T., Winstall, E., Tarun, S.Z., Yates, J.R., Schieltz, D., Sachs, A.B.: One-step affinity purification of the yeast ribosome and its, associated proteins and mRNAs. RNA 8, 948–958 (2002)

    Article  CAS  Google Scholar 

  46. Simons, S.P., McLellan, T.J., Aeed, P.A., Zaniewski, R.P., Desbonnet, C.R., Wondrack, L.M., Marr, E.S., Subashi, T.A., Dougherty, T.J., Xu, Z.Y., Wang, I.K., LeMotte, P.K., Maguire, B.A.: Purification of the large ribosomal subunit via its association with the small subunit. Anal. Biochem. 395, 77–85 (2009)

    Article  CAS  Google Scholar 

  47. Krokhin, O.V., Spicer, V.: Peptide retention standards and hydrophobicity indexes in reversed-phase high-performance liquid chromatography of peptides. Anal. Chem. 81, 9522–9530 (2009)

    Article  CAS  Google Scholar 

  48. Schnier, P.D., Gross, D.S., Williams, E.R.: On the Maximum charge-state and proton-transfer reactivity of peptide and protein ions formed by electrospray-ionization. J. Am. Soc. Mass Spectrom. 6, 1086–1097 (1995)

    Article  CAS  Google Scholar 

  49. Coon, J.J., Ueberheide, B., Syka, J.E.P., Dryhurst, D.D., Ausio, J., Shabanowitz, J., Hunt, D.F.: Protein identification using sequential ion/ion reactions and tandem mass spectrometry. Proc. Natl. Acad. Sci. U.S.A. 102, 9463–9468 (2005)

    Article  CAS  Google Scholar 

  50. Cooper, H.J., Hudgins, R.R., Hakansson, K., Marshall, A.G.: Characterization of amino acid side chain losses in electron capture dissociation. J. Am. Soc. Mass Spectrom. 13, 241–249 (2002)

    Article  CAS  Google Scholar 

  51. Rumachik, N.G., McAlister, G.C., Russell, J.D., Bailey, D.J., Wenger, C.D., Coon, J.J.: Characterizing peptide neutral losses induced by negative electron-transfer dissociation (NETD). J. Am. Soc. Mass Spectrom. 23, 718–727 (2012)

    Article  CAS  Google Scholar 

  52. Iavarone, A.T., Paech, K., Williams, E.R.: Effects of charge state and cationizing agent on the electron capture dissociation of a peptide. Anal. Chem. 76, 2231–2238 (2004)

    Article  CAS  Google Scholar 

  53. Jones, A.W., Cooper, H.J.: Dissociation techniques in mass spectrometry-based proteomics. Analyst 136, 3419–3429 (2011)

    Article  CAS  Google Scholar 

  54. Huang, Y.Y., Triscari, J.M., Tseng, G.C., Pasa-Tolic, L., Lipton, M.S., Smith, R.D., Wysocki, V.H.: Statistical characterization of the charge state and residue dependence of low-energy CID peptide dissociation patterns. Anal. Chem. 77, 5800–5813 (2005)

    Article  CAS  Google Scholar 

  55. Jones, J.W., Sasaki, T., Goodlett, D.R., Turecek, F.: Electron capture in spin-trap capped peptides. An experimental example of ergodic dissociation in peptide cation-radicals. J. Am. Soc. Mass Spectrom. 18, 432–444 (2007)

    Article  CAS  Google Scholar 

  56. Li, X.J., Cournoyer, J.J., Lin, C., O'Connor, P.B.: The effect of fixed charge modifications on electron capture dissociation. J. Am. Soc. Mass Spectrom. 19, 1514–1526 (2008)

    Article  CAS  Google Scholar 

  57. Chung, T.W., Turecek, F.: Amplified histidine effect in electron-transfer dissociation of histidine-rich peptides from histatin 5. Int. J. Mass Spectrom. 306, 99–107 (2011)

    Article  CAS  Google Scholar 

  58. Chung, T.W., Turecek, F.: Selecting fixed-charge groups for electron-based peptide dissociations—a computational study of pyridinium tags. Int. J. Mass Spectrom. 276, 127–135 (2008)

    Article  CAS  Google Scholar 

  59. Chung, T.W., Moss, C.L., Zimnicka, M., Johnson, R.S., Moritz, R.L., Turecek, F.: Electron-capture and -transfer dissociation of peptides tagged with tunable fixed-charge groups: structures and dissociation energetics. J. Am. Soc. Mass Spectrom. 22, 13–30 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Amelia (Mia) Zutz for performing labeling reactions on the neurotensin peptide standards, M. Violet Lee for compiling the precursor charge state data, and A. J. Bureta for help with figure illustrations. The authors are grateful to Professor Toshifumi Inada at Nagoya University, Nagoya, Japan for the gift of the YIT613 FLAG-tagged yeast strain. This work was supported by the National Institutes of Health: NIGMS Program Project P01GM081629, R01 GM080148, and NHGRI Center of Excellence in Genomic Science 1P50HG004952.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lloyd M. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frey, B.L., Ladror, D.T., Sondalle, S.B. et al. Chemical Derivatization of Peptide Carboxyl Groups for Highly Efficient Electron Transfer Dissociation. J. Am. Soc. Mass Spectrom. 24, 1710–1721 (2013). https://doi.org/10.1007/s13361-013-0701-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-013-0701-2

Key words

Navigation