Skip to main content
Log in

Does Addition of NO2 to Carbon-Centered Radicals Yield RONO or RNO2? An Investigation Using Distonic Radical Ions

  • Focus: Distonic Ions: Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

Nitrogen dioxide is used as a “radical scavenger” to probe the position of carbon-centered radicals within complex radical ions in the gas phase. As with analogous neutral radical reactions, this addition results in formation of an [M + NO2]+ adduct, but the structural identity of this species remains ambiguous. Specifically, the question remains: do such adducts have a nitro- (RNO2) or nitrosoxy- (RONO) moiety, or are both isomers present in the adduct population? In order to elucidate the products of such reactions, we have prepared and isolated three distonic phenyl radical cations and observed their reactions with nitrogen dioxide in the gas phase by ion-trap mass spectrometry. In each case, stabilized [M + NO2]+ adduct ions are observed and isolated. The structure of these adducts is probed by collision-induced dissociation and ultraviolet photodissociation action spectroscopy and a comparison made to the analogous spectra of authentic nitro- and nitrosoxy-benzenes. We demonstrate unequivocally that for the phenyl radical cations studied here, all stabilized [M + NO2]+ adducts are exclusively nitrobenzenes. Electronic structure calculations support these mass spectrometric observations and suggest that, under low-pressure conditions, the nitrosoxy-isomer is unlikely to be isolated from the reaction of an alkyl or aryl radical with NO2. The combined experimental and theoretical results lead to the prediction that stabilization of the nitrosoxy-isomer will only be possible for systems wherein the energy required for dissociation of the RO-NO bond (or other low energy fragmentation channels) rises close to, or above, the energy of the separated reactants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Figure 1
Scheme 2
Figure 2
Figure 3
Figure 4
Figure 5
Scheme 3
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Geppert, W.D., Eskola, A.J., Timonen, R.S., Halonen, L.: Kinetics of the reactions of vinyl (C2H3) and propargyl (C3H3) radicals with NO2 in the temperature range 220–340 K. J. Phys. Chem. A 108, 4232–4238 (2004)

    Article  CAS  Google Scholar 

  2. Rissanen, M.P., Arppe, S.L., Eskola, A.J., Tammi, M.M., Timonen, R.S.: Kinetics of the R + NO2 reactions (R = i-C3H7, n-C3H7, s-C4H9, and t-C4H9) in the temperature range 201–489 K. J. Phys. Chem. A 114, 4811–4817 (2010)

    Article  CAS  Google Scholar 

  3. Rissanen, M.P., Popli, K., Timonen, R.S.: Kinetics of resonance stabilized CH3CCCH2 radical reactions with NO and NO2. Chem. Phys. Lett. 543, 28–33 (2012)

    Article  CAS  Google Scholar 

  4. Xu, S., Lin, M.C.: Computational study on the kinetics and mechanism for the unimolecular decomposition of C6H5NO2 and the related C6H5 + NO2 and C6H5O + NO reactions. J. Phys. Chem. B 109, 8367–8373 (2005)

    Article  CAS  Google Scholar 

  5. Wang, Q., Ng, D., Mannan, M.S.: Study on the reaction mechanism and kinetics of the thermal decomposition of nitroethane. Ind. Eng. Chem. Res. 48, 8745–8751 (2009)

    Article  CAS  Google Scholar 

  6. Weaver, A., Metz, R.B., Bradforth, S.E., Neumark, D.M.: Observation of the \( \widetilde{\mathrm{A}}\left( {^2{B_2}} \right) \) and \( \widetilde{\mathrm{C}}\left( {^2{{\mathrm{A}}_2}} \right) \) states of NO2 by negative ion photoelectron spectroscopy of NO 2. J. Chem. Phys. 90(3), 2070–2071 (1989)

    Google Scholar 

  7. Ellison, G.B., Herbert, J.M., McCoy, A.B., Stanton, J.F., Szalay, P.G.: Unimolecular rearrangement of trans-FONO to FNO2. A possible model system for atmospheric nitrate formation. J. Phys. Chem. A 108, 7639–7642 (2004)

    Article  CAS  Google Scholar 

  8. Lam, M.A., Pattison, D.I., Bottle, S.E., Keddie, D.J., Davies, M.J.: Nitric oxide and nitroxides can act as efficient scavengers of protein-derived free radicals. Chem. Res. Toxicol. 21, 2111–2119 (2008)

    Article  CAS  Google Scholar 

  9. Barlow, C.K., Wright, A., Easton, C.J., O'Hair, R.A.J.: Gas-phase ion–molecule reactions using regioselectively generated radical cations to model oxidative damage and probe radical sites in peptides. Org. Biomol. Chem. 9, 3733–3745 (2011)

    Article  CAS  Google Scholar 

  10. Yinon, J.: Mass spectral fragmentation pathways in aminonitrobenzenes. A mass spectrometry/mass spectrometry collision-induced dissociation study. Org. Mass Spectrom. 25(11), 599–604 (1990)

    Article  CAS  Google Scholar 

  11. Yinon, J., McClellan, J.E., Yost, R.A.: Electrospray ionization tandem mass spectrometry collision-induced dissociation study of explosives in an ion trap mass spectrometer. Rapid Commun. Mass Spectrom. 11, 1961–1970 (1997)

    Article  CAS  Google Scholar 

  12. Nguyen, V.S., Vinckier, C., Hue, T.T., Nguyen, M.T.: Decomposition mechanism of the anions generated by atmospheric pressure chemical ionization of nitroanilines. J. Phys. Chem. A 109(48), 10954–10960 (2005)

    Article  CAS  Google Scholar 

  13. Gierczyk, B., Grajewski, J., Zalas, M.: Differentiation of fluoronitroaniline isomers by negative-ion electrospray mass spectrometry. Rapid Commun. Mass Spectrom. 20, 361–364 (2006)

    Article  CAS  Google Scholar 

  14. Fayet, G., Joubert, L., Rotureau, P., Adamo, C.: Theoretical study of the decomposition reactions in substituted nitrobenzenes. J. Phys. Chem. A 112, 4054–4059 (2008)

    Article  CAS  Google Scholar 

  15. Mattson, B., Anderson, M., Mattson, S.: Microscale Gas Chemistry Book, 3rd ed., Educational Innovations: p 482 (2003)

  16. Kirk, B.B., Harman, D.G., Kenttämaa, H.I., Trevitt, A.J., Blanksby, S.J.: Isolation and characterization of charge-tagged phenylperoxyl radicals in the gas phase: direct evidence for products and pathways in low temperature benzene oxidation. Phys. Chem. Chem. Phys. 14(48), 16719–16730 (2012)

    Google Scholar 

  17. Ly, T., Kirk, B.B., Hettiarachchi, P.I., Poad, B.L.J., Trevitt, A.J., da Silva, G., Blanksby, S.J.: Reactions of simple and peptidic α-carboxylate radical anions with dioxygen in the gas phase. Phys. Chem. Chem. Phys. 13, 16314–16323 (2011)

    Article  CAS  Google Scholar 

  18. Kim, T.-Y., Thompson, M.S., Reilly, J.P.: Peptide photodissociation at 157 nm in a linear ion trap mass spectrometer. Rapid Commun. Mass Spectrom. 19, 1657–1665 (2005)

    Article  CAS  Google Scholar 

  19. Harman, D.G., Blanksby, S.J.: Investigation of the gas phase reactivity of the 1-adamantyl radical using a distonic radical anion approach. Org. Biomol. Chem. 5, 3495–3503 (2007)

    Article  CAS  Google Scholar 

  20. Hansen, C.S., Kirk, B.B., Blanksby, S.J., O’Hair, R.A.J., Trevitt, A.J.: Photodissociation action spectroscopy with a linear ion-trap mass spectrometer. (Submitted)

  21. Kirk, B.B., Trevitt, A.J., Blanksby, S.J., Tao, Y., Moore, B.N., Julian, R.R.: Ultraviolet action spectroscopy of iodine labeled peptides and proteins in the gas phase. J. Phys. Chem. A. doi:10.1021/jp305470j. Accepted

  22. Gronert, S.: Estimation of effective ion temperatures in a quadrupole ion trap. J. Am. Soc. Mass Spectrom. 9, 845–848 (1998)

    Article  CAS  Google Scholar 

  23. Becke, A.D.: A new mixing of Hartree-Fock and local density-functional theories. J. Chem. Phys. 98, 1372–1377 (1993)

    Article  CAS  Google Scholar 

  24. Lee, C., Yang, W.T., Parr, R.G.: Development of the (Colle-Salvetti) correlation-energy formula into a functional of the electron density. Phys. Rev. B: Condens. Matter 37(2), 785–789 (1988)

    Article  CAS  Google Scholar 

  25. Dunning Jr., T.H.: Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90, 1007–1023 (1989)

    Article  CAS  Google Scholar 

  26. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.: J. Gaussian 09, Revision C.01. Gaussian, Wallingford (2010)

    Google Scholar 

  27. Hratchian, H.P., Schlegel, H.B.: Accurate reaction paths using Hessian based predictor-corrector integrator. J. Chem. Phys. 120, 9918–9924 (2004)

    Article  CAS  Google Scholar 

  28. Hratchian, H.P., Schlegel, H.B.: In: Frenking, G., Kim, K.S., Scuseria, G.E. (eds.) Theory and Applications of Computational Chemistry: The First 40 Years, EDC. Elsevier, Amsterdam (2005)

    Google Scholar 

  29. Hratchian, H.P., Schlegel, H.B.: Using Hessian updating to increase the efficiency of a Hessian based predictor-corrector reaction path following method. J. Chem. Theory Comput. 1, 61–69 (2005)

    Article  CAS  Google Scholar 

  30. . Kirk, B.B.: Investigating the reactions of gas-phase radicals using distonic ions;Ph.D. Thesis, University of Wollongong (2011)

  31. Arey, J., Aschmann, S.M., Kwok, E.S.C., Atkinson, R.: Alkyl nitrate, hydroxylalkyl nitrate, and hydroxycarbonyl formation from the NOx-Air Photo-oxidations of C5-C8 n-Alkanes. J. Phys. Chem. A 105, 1020–1027 (2001)

    Article  CAS  Google Scholar 

  32. Yu, T., Mebel, A.M., Lin, M.C.: Reaction of phenoxy radical with nitric oxide. J. Phys. Org. Chem. 8(1), 47–53 (1995)

    Article  CAS  Google Scholar 

  33. Berho, F., Caralp, F., Rayez, M.-T., Lesclaux, R., Ratajczak, E.: Kinetics and thermochemistry of the reversible combination reaction of the phenoxy radical with NO. J. Phys. Chem. A 102(1), 1–8 (1998)

    Article  CAS  Google Scholar 

  34. Platz, J., Nielsen, O.J., Wallington, T.J., Ball, J.C., Hurley, M.D., Straccia, A.M., Schneider, W.F.: Atmospheric chemistry of the phenoxy radical, C6H5O(•): UV spectrum and kinetics of its reaction with NO, NO2, and O2. J. Phys. Chem. A 102(41), 7964–7974 (1998)

    Article  CAS  Google Scholar 

  35. McLuckey, S.A., Goeringer, D.E.: Slow heating methods in tandem mass spectrometry. J. Mass Spectrom. 32, 461–474 (1997)

    Article  CAS  Google Scholar 

  36. Glenewinkel-Meyer, T., Crim, F.F.: The isomerization of nitrobenzene to phenylnitrite. J. Mol. Struct. (THEOCHEM) 337, 209–224 (1995)

    Google Scholar 

Download references

Acknowledgments

B.B.K. was supported through an Australian Postgraduate Award. The authors acknowledge the financial support of the Australian Research Council (DP0986738, DP0452849), ARC Centre of Excellence for Free Radical Chemistry and Biotechnology (CE0561607) and the University of Wollongong. The authors thank Christopher Hansen (UOW) for assistance with the LTQ + OPO instrumentation, in addition to Intersect (NSW, Australia) and the NCI National Facility (Canberra, Australia) for a generous allocation of resources under the Merit Allocation Schemes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Blanksby.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 305 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirk, B.B., Trevitt, A.J. & Blanksby, S.J. Does Addition of NO2 to Carbon-Centered Radicals Yield RONO or RNO2? An Investigation Using Distonic Radical Ions. J. Am. Soc. Mass Spectrom. 24, 481–492 (2013). https://doi.org/10.1007/s13361-012-0549-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-012-0549-x

Keywords

Navigation