Skip to main content
Log in

Metabolic pathways in the mixed segment of the wood-feeding termite Nasutitermes takasagoensis (Blattodea (Isoptera): Termitidae)

  • Original Research Paper
  • Published:
Applied Entomology and Zoology Aims and scope Submit manuscript

Abstract

Alimentary canals of higher termites are equipped with a complex structural segment consisting of mesenteric and proctodeal epithelial tissues, which is termed the mixed segment. To assess metabolic functions occurring in the mixed segment, Nasutitermes takasagoensis (Shiraki) transcriptomes were obtained from the mixed segment and adjacent gut regions (midgut and first proctodeal segment) and were annotated using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The predominant metabolic function detected in the mixed segment was energy production via oxidative phosphorylation. As KEGG orthologs involved in lysosomal and phagosomal systems were also characteristic of this segment, cellular components are probably recycled rather than newly produced, allowing higher energy production. The predominant adenosine triphosphate (ATP) consumer in the mixed segment was vacuolar-type H+-ATPase (V-ATPase), known to be involved in K+ transport in many insects. Based on our data, V-ATPases appear to electrogenically drive NHE6 or NHE7 (NHE6/7) K+/H+ antiporters to stimulate K+ secretion, increasing gut lumen pH. The mixed segment also expressed higher levels than did the adjacent gut regions of carbonic anhydrase, another contributor to gut alkalization through HCO3 production. Thus, metabolic pathways in the mixed segment might promote lignocellulose solubilization in higher termites’ gut, contributing to their success.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bignell DE (1994) Soil-feeding and gut morphology in higher termites. In: Hunt JH, Nalepa CA (eds) Nourishment and evolution in insect societies. Westview Press, Boulder, pp 131–159

    Google Scholar 

  • Bignell DE (2000) Introduction to symbiosis. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 189–208

    Chapter  Google Scholar 

  • Bignell DE (2011) Morphology, physiology, biochemistry and functional design of the termite gut: an evolutionary wonderland. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 375–412

    Chapter  Google Scholar 

  • Bignell DE, Oskarsson H, Anderson JM, Ineson P (1983) Structure, microbial associations and function of the so-called “mixed segment” of the gut in two soil-feeding termites, Procubitermes aburiensis and Cubitermes severus (Termitidae, Termitinae). J Zool (Lond) 201:445–480

    Article  Google Scholar 

  • Bonar P, Schneider H-P, Becker HM, Deitmer JW, Casey JR (2013) Three-dimensional model for the human Cl/HCO3 exchanger, AE1, by homology to the E. coli ClC protein. J Mol Biol 425(14):2591–2608

    Article  CAS  PubMed  Google Scholar 

  • Brett CL, Tukaye DN, Mukherjee S, Rao R (2005) The yeast endosomal Na+(K+)/H+ exchanger Nhx1 regulates cellular pH to control vesicle trafficking. Mol Biol Cell 16(3):1396–1405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brune A (2014) Symbiotic digestion of lignocellulose in termite guts. Nat Rev Microbiol 12:168–180

    Article  CAS  PubMed  Google Scholar 

  • Brune A, Dietrich C (2015) The gut microbiota of termites: digesting the diversity in the light of ecology and evolution. Annu Rev Microbiol 69:145–166

    Article  CAS  PubMed  Google Scholar 

  • Brune A, Ohkuma M (2011) Role of the termite gut microbiota in symbiotic digestion. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 439–475

    Google Scholar 

  • Bullard JH, Purdom E, Hansen KD, Dudoi S (2010) Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinform 11:94

    Article  Google Scholar 

  • Cornwell WK, Cornelissen JHC, Allison SD, Bauhus J, Eggleton P, Preson CM, Scarff F, Weedon JT, Wirth C, Zanne AE (2009) Plant traits and wood fates across the globe: rotted, burned, or consumed? Global Change Biol 15:2431–2449

    Article  Google Scholar 

  • Donowitz M, Tse CM, Fuster D (2013) SLC9/NHE gene family, a plasma membrane and organellar family of Na+/H+ exchangers. Mol Asp Med 34:236–251

    Article  CAS  Google Scholar 

  • Grassé P-P, Noirot C (1954) Apicotermes arquieri (Isoptère): Ses constructions, sa biologie. Considérations generals sur la sous-famille des Apicotermitinae nov. Ann Sci Nat Zool Biol Anim 16(11):345–388

    Google Scholar 

  • Holmgren N (1909) Termitenstudien: 1. Anatomische Untersuchungen. Kgl Svenska Vetenskapsakad Handl 44(3):1–215

    Google Scholar 

  • Hu X, Zhang X, Wang J, Huang M, Xue R, Cao G, Gong C (2015) Transcriptome analysis of BmN cells following over-expression of BmSTAT. Mol Genet Genomics 290(6):2137–2146

    Article  CAS  PubMed  Google Scholar 

  • Jentsch TJ, Stein V, Weinreich F, Zdebik AA (2002) Molecular structure and physiological function of chloride channels. Physiol Rev 82(2):503–568

    Article  CAS  PubMed  Google Scholar 

  • Kanamori Y, Saito A, Hagiwara-Komoda Y, Tanaka D, Mitsumasu K, Kikuta S, Watanabe M, Cornette R, Kikawada T, Okuda T (2010) The trehalose transporter 1 gene sequence is conserved in insects and encodes proteins with different kinetic properties involved in trehalose import into peripheral tissues. Insect Biochem Mol Biol 40(1):30–37

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M (2014) Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 42:D199–D205

    Article  CAS  PubMed  Google Scholar 

  • Kappler A, Brune A (1999) Influence of gut alkalinity and oxygen status on mobilization and size class distribution of humic acids in the hindgut of soil-feeding termites. Appl Soil Ecol 13:219–229

    Article  Google Scholar 

  • Kikuta S, Hagiwara-Komoda Y, Noda H, Kikawada T (2012) A novel member of the trehalose transporter family functions as an H+-dependent trehalose transporter in the reabsorption of trehalose in malpighian tubules. Front Physiol 3:290

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumara RP, Saitoh S, Aoyama H, Shinzato N, Tokuda G (2015) Predominat expression and activity of vacuolar H+-ATPases in the mixed segment of the wood-feeding termite, Nasutitermes takasagoensis. J Insect Physiol 78:1–8

    Article  CAS  PubMed  Google Scholar 

  • Lei Y, Zhu X, Xie W, Wu Q, Wang S, Guo Z, Xu B, Li X, Zhou X, Zhang Y (2014) Midgut transcriptome response to a Cry toxin in the diamondback moth, Plutella xylostella (Lepidoptera; Plutellidae). Gene 533:180–187

    Article  CAS  PubMed  Google Scholar 

  • Lo N, Eggleton P (2011) Termite phylogenetics and co-cladogenesis with symbionts. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 27–50

    Google Scholar 

  • Luo J, Liu X, Liu L, Zhang P, Chen L, Gao Q, Ma W, Chen L, Lei C (2014) De novo analysis of the Adelphocoris suturalis Jakovlev metathoractic scent glands transcriptome and expression patterns of pheromone biosynthesis-related genes. Gene 551:271–278

    Article  CAS  PubMed  Google Scholar 

  • Luzio JP, Pryor PR, Bright NA (2007) Lysosomes: fusion and function. Nat Rev Mol Cell Biol 8:622–632

    Article  CAS  PubMed  Google Scholar 

  • Mikaelyan A, Strassert JFH, Tokuda G, Brune A (2014) The fiber-associated cellulolytic bacterial community in the hindgut of wood-feeding higher termites (Nasutitermes spp.). Environ Microbiol 16:2711–2722

    Article  CAS  Google Scholar 

  • Mount DB, Romero MF (2004) The SLC26 gene family of multifunctional anion exchangers. Pflügers Arch/Eur J Physiol 447(5):710–721

    Article  CAS  Google Scholar 

  • Nakashima K, Watanabe H, Saitoh H, Tokuda G, Azuma J-I (2002) Dual cellulose-digesting system of the wood-feeding termite, Coptotermes formosanus Shiraki. Insect Biochem Mol Biol 32:777–784

    Article  CAS  PubMed  Google Scholar 

  • Nandety RS, Kamita SG, Hammock BD, Falk BW (2013) Sequencing and de novo assembly of the transcriptome of the glassy-winged sharpshooter (Homalodisca vitripennis). PLoS ONE 8(12):e81681

    Article  PubMed  PubMed Central  Google Scholar 

  • Ni J, Tokuda G (2013) Lignocellulose-degrading enzymes from termites and their symbiotic microbiota. Biotechnol Adv 31:838–850

    Article  CAS  PubMed  Google Scholar 

  • Noirot C (2001) The gut of termites (Isoptera): comparative anatomy, systematics, phylogeny. II. Higher termites (Termitidae). Ann Soc Entomol Fr (NS) 37:431–471

    Google Scholar 

  • Ohkuma M, Brune A (2011) Diversity, structure, and evolution of the termite gut microbial community. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 413–438

    Google Scholar 

  • Patrick ML, Aimanova K, Sanders HR, Gill SS (2006) P-type Na+/K+-ATPase and V-type H+-ATPase expression patterns in the osmoregulatory organs of larval and adult mosquito Aedes aegypti. J Exp Biol 209:4638–4651

    Article  CAS  PubMed  Google Scholar 

  • Piermarini PM, Weihrauch D, Meyer H, Huss M, Beyenbach KW (2009) NHE8 is an intracellular cation/H+ exchanger in renal tubules of the yellow fever mosquito Aedes aegypti. Am J Physiol Renal Physiol 296:F730–F750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poulsen M, Hub H, Li C, Chen Z, Xu L, Otani S, Nygaard S, Nobre T, Klaubauf S, Schindler PM, Hauser F, Pan H, Yang Z, Sonnenberg ASM, Beer ZWd, Zhang Y, Wingfield MJ, Grimmelikhuijzen CJP, Vries RPd, Korb J, Aanen DK, Wang J, Boomsma JJ, Zhang G (2014) Complementary symbiont contributions to plant decomposition in a fungus-farming termite. Proc Natl Acad Sci USA 111(40):14500–14505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saier MH, Reddy VS, Tamang DG, Västermark Å (2014) The transporter classification database. Nucleic Acids Res 42:D251–D258

    Article  CAS  PubMed  Google Scholar 

  • Terrapon N, Li C, Robertson HM, Ji L, Meng X, Booth W, Chen Z, Childers CP, Glastad KM, Gokhale K, Gowin J, Gronenberg W, Hermansen RA, Hu H, Hunt BG, Huylmans AK, Khalil SMS, Mitchell RD, Munoz-Torres MC, Mustard JA, Pan H, Reese JT, Scharf ME, Sun F, Vogel H, Xiao J, Yang W, Yang Z, Yang Z, Zhou J, Zhu J, Brent CS, Elsik CG, Goodisman MAD, Liberles DA, Roe RM, Vargo EL, Vilcinskas A, Wang J, Bornberg-Bauer E, Korb J, Zhang G, Liebig J (2014) Molecular traces of alternative social organization in a termite genome. Nat Commun 5:3636

    Article  CAS  PubMed  Google Scholar 

  • Tokuda G, Watanabe H (2007) Hidden cellulases in termites: revision of an old hypothesis. Biol Lett 3:336–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tokuda G, Watanabe H, Matsumoto T, Noda H (1997) Cellulose digestion in the wood-eating higher termite, Nasutitermes takasagoensis (Shiraki): distribution of cellulases and properties of endo-β-1,4-glucanase. Zool Sci 14:83–93

    Article  CAS  PubMed  Google Scholar 

  • Tokuda G, Yamaoka I, Noda H (2000) Localization of symbiotic clostridia in the mixed segment of the termite Nasutitermes takasagoensis. Appl Environ Microbiol 66(5):2199–2207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tokuda G, Nakamura T, Murakami R, Yamaoka I (2001) Morphology of the digestive system in the wood-feeding termite Nasutitermes takasagoensis (Shiraki) [Isoptera: Termitidae]. Zool Sci 18:869–877

    Article  Google Scholar 

  • Tokuda G, Lo N, Watanabe H, Arakawa G, Matsumoto T, Noda H (2004) Major alteration of the expression site of endogenous cellulases in members of an apical termite lineage. Mol Ecol 13:3219–3228

    Article  CAS  PubMed  Google Scholar 

  • Tokuda G, Lo N, Watanabe H (2005) Marked variations in patterns of cellulase activity against crystalline- vs. carboxymethyl-cellulose in the digestive systems of diverse, wood-feeding termites. Physiol Entomol 30(4):372–380

    CAS  Google Scholar 

  • Umbarger HE (1978) Amino acid biosynthesis and its regulation. Annu Rev Biochem 47:533–606

    Article  CAS  Google Scholar 

  • Warburg O, Wind F, Negelein E (1927) The metabolism of tumors in the body. J Gen Physiol 8(6):519–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe H, Tokuda G (2010) Cellulolytic systems in insects. Annu Rev Entomol 55:609–632

    Article  CAS  PubMed  Google Scholar 

  • Weihrauch D, Donini A, O’Donnell MJ (2011) Ammonia transport by terrestrial and aquatic insects. J Insect Physiol 58:473–487

    Article  PubMed  Google Scholar 

  • Wieczorek H, Gruber G, Harvey W, Huss M, Merzendorfer H, Zeiske W (2000) Structure and regulation of insect plasma membrane H+ V-ATPase. J Exp Biol 203:127–135

    CAS  PubMed  Google Scholar 

  • Zhang W, Song W, Zhang Z, Wang H, Yang M, Guo R, Li M (2014) Transcriptome analysis of Dastarcus helophoroides (Coleoptera: Bothrideridae) using Illumina HiSeq Sequencing. PLoS ONE 9(6):e100673

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to Drs. Hideaki Maekawa, Masaru Hojo, Takahiro Hosokawa, Kaori Yamada, and Mr. Yukihiro Kinjo for their valuable assistance during this study. This research was supported by Grants from COMB at University of the Ryukyus, Narishige Zoological Science Award, and KAKENHI No. 26292177 from JSPS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaku Tokuda.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumara, R.P., Saitoh, S., Aoyama, H. et al. Metabolic pathways in the mixed segment of the wood-feeding termite Nasutitermes takasagoensis (Blattodea (Isoptera): Termitidae). Appl Entomol Zool 51, 429–440 (2016). https://doi.org/10.1007/s13355-016-0417-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13355-016-0417-4

Keywords

Navigation