Skip to main content
Log in

A high incidence of chromosome abnormalities in two-cell stage porcine IVP embryos

  • Animal Genetics • Original Paper
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

In pigs, in vitro production is difficult with a high occurrence of polyspermy and low blastocyst formation rates. To test the hypothesis that this may, at least in part, be due to chromosomal errors, we employed whole genome amplification and comparative genomic hybridization, performing comprehensive chromosome analysis to assess both cells of the two-cell stage in vitro porcine embryos. We thus described the incidence, nature and origin of chromosome abnormalities, i.e. whether they derived from incorrect meiotic division during gametogenesis or aberrant mitotic division in the zygote. We observed that 19 out of 51 (37 %) of two-cell stage early pig IVP embryos had a chromosome abnormality, mostly originating from an abnormal division in the zygote. Moreover, we frequently encountered multiple aneuploidies and segmental chromosome aberrations. These results indicate that the pig may be particularly sensitive to in vitro production, which may, in turn, be due to incorrect chromosome segregations during meiosis and early cleavage divisions. We thus accept our hypothesis that chromosome abnormality could explain poor IVP outcomes in pigs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Baart EB, Martini E, van den Berg I et al (2006) Preimplantation genetic screening reveals a high incidence of aneuploidy and mosaicism in embryos from young women undergoing IVF. Hum Reprod 21:223–233

    Article  CAS  PubMed  Google Scholar 

  • Bazrgar M, Gourabi H, Yazdi PE et al (2014) DNA repair signalling pathway genes are overexpressed in poor-quality pre-implantation human embryos with complex aneuploidy. Eur J Obstet Gynecol Reprod Biol 175:152–156

    Article  CAS  PubMed  Google Scholar 

  • Bielanska M, Tan SL, Ao A (2002) Chromosomal mosaicism throughout human preimplantation development in vitro: incidence, type, and relevance to embryo outcome. Hum Reprod 17:413–419

    Article  PubMed  Google Scholar 

  • Braude P, Bolton V, Moore S (1988) Human gene expression first occurs between the four- and eight-cell stages of preimplantation development. Nature 332:459–461

    Article  CAS  PubMed  Google Scholar 

  • Chavez SL, Loewke KE, Han J et al (2012) Dynamic blastomere behaviour reflects human embryo ploidy by the four-cell stage. Nat Commun 3:1251

    Article  PubMed Central  PubMed  Google Scholar 

  • Coppola G, Alexander B, Di Berardino D et al (2007) Use of cross-species in-situ hybridization (ZOO-FISH) to assess chromosome abnormalities in day-6 in-vivo- or in-vitro-produced sheep embryos. Chromosome Res 15:399–408

    Article  CAS  PubMed  Google Scholar 

  • Gil MA, Ruiz M, Cuello C et al (2004) Influence of sperm:oocyte ratio during in vitro fertilization of in vitro matured cumulus-intact pig oocytes on fertilization parameters and embryo development. Theriogenology 61:551–560

    Article  PubMed  Google Scholar 

  • Grupen CG (2014) The evolution of porcine embryo in vitro production. Theriogenology 81:24–37

    Article  PubMed  Google Scholar 

  • Gutierrez-Mateo C, Benet J, Wells D et al (2004) Aneuploidy study of human oocytes first polar body comparative genomic hybridization and metaphase II fluorescence in situ hybridization analysis. Hum Reprod 19:2859–2868

    Article  CAS  PubMed  Google Scholar 

  • Han Y-M, Wang W-H, Abeydeera LR et al (1999) Pronuclear location before the first cell division determines ploidy of polyspermic Pig embryos. Biol Reprod 61:1340–1346

    Article  CAS  PubMed  Google Scholar 

  • Hassold T, Hall H, Hunt P (2007) The origin of human aneuploidy: where we have been, where we are going. Hum Mol Genet 16:203–208

    Article  Google Scholar 

  • Hellani A, Abu-Amero K, Azouri J, El-Akoum S (2008) Successful pregnancies after application of array-comparative genomic hybridization in PGS-aneuploidy screening. Reprod Biomed Online 17:841–847

    Article  CAS  PubMed  Google Scholar 

  • Hornak M, Hulinska P, Musilova P et al (2009) Investigation of chromosome aneuploidies in early porcine embryos using comparative genomic hybridization. Cytogenet Genome Res 126:210–216

    Article  CAS  PubMed  Google Scholar 

  • Hornak M, Jeseta M, Musilova P et al (2011) Frequency of aneuploidy related to Age in porcine oocytes. Plos One 6:e18892

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hornak M, Oracova E, Hulinska P et al (2012) Aneuploidy detection in pigs using comparative genomic hybridization: from the oocytes to blastocysts. PLoS ONE 7:e30335

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hunter RHF (1996) Ovarian control of very low sperm/egg ratios at the commencement of mammalian fertilisation to avoid polyspermy. Mol Reprod Dev 44:417–422

    Article  CAS  PubMed  Google Scholar 

  • Ioannou D, Fonseka KGL, Meershoek EJ, Thornhill AR, Abogrein A, Ellis M, Griffin DK (2012) Twenty four chromosome FISH in human IVF embryos reveals patterns of post-zygotic chromosome segregation and nuclear organization. Chromosom Res 20:447–460

    Article  CAS  Google Scholar 

  • Jacobsen A, Arnold N, Weimer J, Kiechle M (2000) Comparison of comparative genomic hybridization and interphase fluorescence in situ hybridization in ovarian carcinomas: possibilities and limitations of both techniques. Cancer Genet Cytogenet 122:7–12

    Article  CAS  PubMed  Google Scholar 

  • Jarrell VL, Day BN, Prather RS (1991) The transition from maternal to zygotic control of development occurs during the 4-cell stage in the domestic pig, Sus scrofa: quantitative and qualitative aspects of protein synthesis. Biol Reprod 44:62–68

    Article  CAS  PubMed  Google Scholar 

  • Lechniak D, Warzych E, Pers-Kamczyc E et al (2007) Gilts and sows produce similar rate of diploid oocytes in vitro whereas the incidence of aneuploidy differs significantly. Theriogenology 68:755–762

    Article  CAS  PubMed  Google Scholar 

  • Macklon NS, Geraedts JPM, Fauser BCJM (2002) Conception to ongoing pregnancy: the “black box” of early pregnancy loss. Hum Reprod Update 8:333–343

    Article  CAS  PubMed  Google Scholar 

  • Mantzouratou A, Delhanty JDA (2011) Aneuploidy in the human cleavage stage embryo. Cytogenet Genome Res 133:141–148

    Article  CAS  PubMed  Google Scholar 

  • McCauley TC, Mazza MR, Didion BA et al (2003) Chromosomal abnormalities in day-6, in vitro-produced pig embryos. Theriogenology 60:1569–1580

    Article  PubMed  Google Scholar 

  • Mertzanidou A, Wilton L, Cheng J et al (2013) Microarray analysis reveals abnormal chromosomal complements in over 70 % of 14 normally developing human embryos. Hum Reprod 28:256–264

    Article  CAS  PubMed  Google Scholar 

  • Munne S, Weier HUG, Grifo J, Cohen J (1994) Chromosome mosaicism in human embryos. Biol Reprod 51:373–379

    Article  CAS  PubMed  Google Scholar 

  • Munne S, Magli C, Adler A et al (1997) Treatment-related chromosome abnormalities in human embryos. Hum Reprod 12:780–784

    Article  CAS  PubMed  Google Scholar 

  • Rambags BPB, Krijtenburg PJ, Van Drie HF et al (2005) Numerical chromosomal abnormalities in equine embryos produced in vivo and in vitro. Mol Reprod Dev 72:77–87

    Article  CAS  PubMed  Google Scholar 

  • Ruangvutilert P, Delhanty JD, Serhal P et al (2000) FISH analysis on day 5 post-insemination of human arrested and blastocyst stage embryos. Prenat Diagn 20:552–560

    Article  CAS  PubMed  Google Scholar 

  • Sirchia SM, Garagiola I, Colucci G et al (1998) Trisomic zygote rescue revealed by DNA polymorphism analysis in confined placental mosaicism. Prenat Diagn 18:201–206

    Article  CAS  PubMed  Google Scholar 

  • Somfai T, Ozawa M, Noguchi J et al (2008) In vitro development of polyspermic porcine oocytes: relationship between early fragmentation and excessive number of penetrating spermatozoa. Anim Reprod Sci 107:131–147

    Article  PubMed  Google Scholar 

  • Sosnowski J, Waroczyk M, Switonski M (2003) Chromosome abnormalities in secondary pig oocytes matured in vitro. Theriogenology 60:571–581

    Article  PubMed  Google Scholar 

  • Trussler JL, Pickering SJ, Ogilvie CM (2004) Investigation of chromosomal imbalance in human embryos using comparative genomic hybridization. Reprod Biomed Online 8:701–711

    Article  PubMed  Google Scholar 

  • Ulloa CMU, Yoshizawa M, Komoriya E et al (2008) The blastocyst production rate and incidence of chromosomal abnormalities by developmental stage in vitro produced porcine embryos. J Reprod Dev 54:22–29

    Article  Google Scholar 

  • van Echten-Arends J, Mastenbroek S, Sikkema-Raddatz B et al (2011) Chromosomal mosaicism in human preimplantation embryos: a systematic review. Hum Reprod Update 17:620–627

    Article  PubMed  Google Scholar 

  • Vanneste E, Voet T, Le Caignec C et al (2009) Chromosome instability is common in human cleavage-stage embryos. Nat Med 15:577–583

    Article  CAS  PubMed  Google Scholar 

  • Viuff D, Rickords L, Offenberg H et al (1999) A high proportion of bovine blastocysts produced in vitro are mixoploid. Biol Reprod 60:1273–1278

    Article  CAS  PubMed  Google Scholar 

  • Wang HX, Flaherty SP, Swann NJ, Matthews CD (1994) Discontinuous percoll gradients enrich X-bearing human spermatozoa: a study using double-label fluorescence in-situ hybridization. Hum Reprod Oxf Engl 9:1265–1270

    CAS  Google Scholar 

  • Wang WH, Abeydeera LR, Cantley TC, Day BN (1997) Effects of oocyte maturation media on development of pig embryos produced by in vitro fertilization. J Reprod Fertil 111:101–108

    Article  CAS  PubMed  Google Scholar 

  • Wilton L, Voullaire L, Sargeant P et al (2003) Preimplantation aneuploidy screening using comparative genomic hybridization or fluorescence in situ hybridization of embryos from patients with recurrent implantation failure. Fertil Steril 80:860–868

    Article  PubMed  Google Scholar 

  • Zudova D, Rezacova O, Kubickova S, Rubes J (2003) Aneuploidy detection in porcine embryos using fluorescence in situ hybridization. Cytogenet Genome Res 102:179–183

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Prof. Darren K Griffin, PhD (School of Biosciences, University of Kent, Canterbury, UK) for proofreading the manuscript.

This work was supported by the project P502/12/P785 of the Grant Agency of the Czech Republic, project QI101A166 of the Ministry of Agriculture of the Czech Republic and project CEITEC – Central European Institute of Technology (CZ.1.05/1.1.00/02.0068) from the European Regional Development Fund. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslav Hornak.

Additional information

Communicated by: Maciej Szydlowski

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. S1

An example of monospermic and polyspermic fertilization A fertilized monospermic zygote with female (FPN) and male pronucleus (MPN) (A); a polyspermic zygote with two male pronuclei (B) (GIF 489 kb)

High Resolution Image (TIFF 6948 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hornak, M., Jeseta, M., Hanulakova, S. et al. A high incidence of chromosome abnormalities in two-cell stage porcine IVP embryos. J Appl Genetics 56, 515–523 (2015). https://doi.org/10.1007/s13353-015-0280-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13353-015-0280-y

Keywords

Navigation