Skip to main content
Log in

What is crop heterosis: new insights into an old topic

  • Plant Genetics • Review
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

Heterosis (or hybrid vigor) refers to a natural phenomenon whereby hybrid offspring of genetically diverse individuals out-perform their parents in multiple traits including yield, adaptability and resistances to biotic and abiotic stressors. Innovations in technology and research continue to clarify the mechanisms underlying crop heterosis, however the intrinsic relationship between the biological basis of heterosis remain unclear. In this review, we aim to provide insight into the molecular genetic basis of heterosis by presenting recent advances in the ‘omics’ of heterosis and the role of non-coding regions, particularly in relation to energy–use efficiency. We propose that future research should focus on integrating the expanding datasets from different species and hybrid combinations, to mine key heterotic genes and unravel interactive ‘omics’ networks associated with heterosis. Improved understanding of heterosis and the biological basis for its manipulation in agriculture should help to streamline its use in enhancing crop productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdelkhalik AF, Shishido R, Nomura K, Ikehashi H (2005) QTL-based analysis of heterosis for grain shape traits and seedling characteristics in an indica-japonica hybrid in rice (Oryza sativa L.). Breeding Science 55(1):41–48

    CAS  Google Scholar 

  • Banaei Moghaddam AM, Fuchs J, Czauderna T, Houben A, Mette MF (2010) Intraspecific hybrids of Arabidopsis thaliana revealed no gross alterations in endopolyploidy, DNA methylation, histone modifications and transcript levels. Theor Appl Genet 120(2):215–226

    CAS  PubMed  Google Scholar 

  • Baranwal VK, Mikkilineni V, Zehr UB, Tyagi AK, Kapoor S (2012) Heterosis: emerging ideas about hybrid vigour. J Exp Bot 63(18):6309–6314

    CAS  PubMed  Google Scholar 

  • Barber WT, Zhang W, Win H, Varala KK, Dorweiler JE, Hudson ME, Moose SP (2012) Repeat associated small RNAs vary among parents and following hybridization in maize. Proc Natl Acad Sci U S A 109(26):10444–10449

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ben-Israel I, Kilian B, Nida H, Fridman E (2012) Heterotic trait locus (HTL) mapping identifies intra-locus interactions that underlie reproductive hybrid vigor in Sorghum bicolor. PLoS One 7(6):e38993

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bennetzen JL (2005) Transposable elements, gene creation and genome rearrangement in flowering plants. Curr Opin Genet Dev 15(6):621–627

    CAS  PubMed  Google Scholar 

  • Bruce AB (1910) The Mendelian theory of heredity and augmentation of vigour. Science 32:627–628

    CAS  PubMed  Google Scholar 

  • Chandler VL (2010) Paramutation's properties and puzzles. Science 330(6004):628–629

  • Chen ZJ (2010) Molecular mechanisms of polyploidy and hybrid vigor. Trends in Plant Science 15(2):57–71

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen ZJ (2013) Genomic and epigenetic insights into the molecular bases of heterosis. Nat Rev Genet 14(7):471–482

    CAS  PubMed  Google Scholar 

  • Chen ZJ, Ni Z (2006) Mechanisms of genomic rearrangements and gene expression changes in plant polyploids. Bioessays 28(3):240–252

    PubMed  Google Scholar 

  • Chen F, He G, He H, Chen W, Zhu X, Liang M, Chen L, Deng XW (2010) Expression analysis of miRNAs and highly-expressed small RNAs in two rice subspecies and their reciprocal hybrids. J Integr Plant Biol 52(11):971–980

    CAS  PubMed  Google Scholar 

  • Chodavarapu RK, Feng S, Ding B, Simon SA, Lopez D, Jia Y, Wang GL, Meyers BC, Jacobsen SE, Pellegrini M (2012) Transcriptome and methylome interactions in rice hybrids. Proc Natl Acad Sci U S A 109(30):12040–12045

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coors JG, Pandey S (1997) Proceedings of the International Symposium on the Genetics and Exploitation of Heterosis in Crops, CIMMYT, Mexico City, Mexico, 17–22 Aug. 1997. ASA, CSSA, and SSSA, Madison

  • Crow JF (1948) Alternative hypotheses of hybrid vigor. Genetics 33(5):477–487

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dahal D, Mooney BP, Newton KJ (2012) Specific changes in total and mitochondrial proteomes are associated with higher levels of heterosis in maize hybrids. Plant J 72(1):70–83

    CAS  PubMed  Google Scholar 

  • Davenport CB (1908) Degeneration, albinism and inbreeding. Science 28(718):454–455

    CAS  PubMed  Google Scholar 

  • Ding D, Wang Y, Han M, Fu Z, Li W, Liu Z, Hu Y, Tang J (2012) MicroRNA transcriptomic analysis of heterosis during maize seed germination. PLoS One 7(6):e39578

    CAS  PubMed Central  PubMed  Google Scholar 

  • Frascaroli E, Cane MA, Landi P, Pea G, Gianfranceschi L, Villa M, Morgante M, Pe ME (2007) Classical genetic and quantitative trait loci analyses of heterosis in a maize hybrid between two elite inbred lines. Genetics 176(1):625–644

    CAS  PubMed Central  PubMed  Google Scholar 

  • Frascaroli E, Cane MA, Pe ME, Pea G, Landi P (2012) Characterization of heterotic quantitative trait loci in maize by evaluation of near-isogenic lines and their crosses at two competition levels. Theor Appl Genet 124(1):35–47

    PubMed  Google Scholar 

  • Fu D, Qian W, Zou J, Meng J (2011) Genetic dissection of intersubgenomic heterosis in Brassica napus carrying genomic components of B. rapa. Euphytica 148(2):151–164

    Google Scholar 

  • Fujimoto R, Taylor JM, Shirasawa S, Peacock WJ, Dennis ES (2012) Heterosis of Arabidopsis hybrids between C24 and Col is associated with increased photosynthesis capacity. Proc Natl Acad Sci USA 109(18):7109–7114

    CAS  PubMed Central  PubMed  Google Scholar 

  • Garcia AA, Wang S, Melchinger AE, Zeng ZB (2008) Quantitative trait loci mapping and the genetic basis of heterosis in maize and rice. Genetics 180(3):1707–1724

    PubMed Central  PubMed  Google Scholar 

  • Genger RK, Peacock WJ, Dennis ES, Finnegan EJ (2003) Opposing effects of reduced DNA methylation on flowering time in Arabidopsis thaliana. Planta 216(3):461–466

    CAS  PubMed  Google Scholar 

  • Goff SA (2011) A unifying theory for general multigenic heterosis: energy efficiency, protein metabolism, and implications for molecular breeding. New Phytologist 189(4):923–937

    CAS  PubMed  Google Scholar 

  • Graham GI, Wolff DW, Stuber CW (1997) Characterization of a yield quantitative trait locus on chromosome five of maize by fine mapping. Crop Science 37:1601–1610

    CAS  Google Scholar 

  • Greaves IK, Groszmann M, Ying H, Taylor JM, Peacock WJ, Dennis ES (2012) Trans chromosomal methylation in Arabidopsis hybrids. Proc Natl Acad Sci U S A 109(9):3570–3575

    CAS  PubMed Central  PubMed  Google Scholar 

  • Greaves IK, Groszmann M, Wang A, Peacock WJ, Dennis ES (2014) Inheritance of trans chromosomal methylation patterns from Arabidopsis F1 hybrids. Proc Natl Acad Sci U S A 111(5):2017–2022

    CAS  PubMed Central  PubMed  Google Scholar 

  • Groszmann M, Greaves IK, Albert N, Fujimoto R, Helliwell CA, Dennis ES, Peacock WJ (2011a) Epigenetics in plants—vernalization and hybrid vigour. Biochim Biophys Acta 1809(8):427–437

    CAS  PubMed  Google Scholar 

  • Groszmann M, Greaves IK, Albertyn ZI, Scofield GN, Peacock WJ, Dennis ES (2011b) Changes in 24-nt siRNA levels in Arabidopsis hybrids suggest an epigenetic contribution to hybrid vigor. Proc Natl Acad Sci U S A 108(6):2617–2622

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guo M, Rupe MA, Zinselmeier C, Habben J, Bowen BA, Smith OS (2004) Allelic variation of gene expression in maize hybrids. Plant Cell 16(7):1707–1716

  • Guo M, Rupe MA, Yang X, Crasta O, Zinselmeier C, Smith OS, Bowen B (2006) Genome-wide transcript analysis of maize hybrids: allelic additive gene expression and yield heterosis. Theor Appl Genet 113(5):831–845

    CAS  PubMed  Google Scholar 

  • Guo M, Rupe MA, Dieter JA, Zou JJ, Spielbauer D, Duncan KE, Howard RJ, Hou ZL, Simmons CR (2010) Cell number regulator1 affects plant and organ size in maize: implications for crop yield enhancement and heterosis. Plant Cell 22(4):1057–1073

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guo B, Chen Y, Zhang G, Xing J, Hu Z, Feng W, Yao Y, Peng H, Du J, Zhang Y, Ni Z, Sun Q (2013) Comparative proteomic analysis of embryos between a maize hybrid and its parental lines during early stages of seed germination. PLoS One 8(6):e65867

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guo M, Rupe MA, Wei J, Winkler C, Goncalves-Butruille M, Weers BP, Cerwick SF, Dieter JA, Duncan KE, Howard RJ, Hou Z, Loffler CM, Cooper M, Simmons CR (2014) Maize ARGOS1 (ZAR1) transgenic alleles increase hybrid maize yield. J Exp Bot 65(1):249–260

    CAS  PubMed Central  PubMed  Google Scholar 

  • Harewood L, Schutz F, Boyle S, Perry P, Delorenzi M, Bickmore WA, Reymond A (2010) The effect of translocation-induced nuclear reorganization on gene expression. Genome Research 20(5):554–564

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hauben M, Haesendonckx B, Standaert E, Van Der Kelen K, Azmi A, Akpo H, Van Breusegem F, Guisez Y, Bots M, Lambert B, Laga B, De Block M (2009) Energy use efficiency is characterized by an epigenetic component that can be directed through artificial selection to increase yield. Proc Natl Acad Sci U S A 106(47):20109–20114

    CAS  PubMed Central  PubMed  Google Scholar 

  • He G, Zhu X, Elling AA, Chen L, Wang X, Guo L, Liang M, He H, Zhang H, Chen F, Qi Y, Chen R, Deng XW (2010a) Global epigenetic and transcriptional trends among two rice subspecies and their reciprocal hybrids. Plant Cell 22(1):17–33

    CAS  PubMed Central  PubMed  Google Scholar 

  • He Q, Zhang KX, Xu CG, Xing YZ (2010b) Additive and additive x additive interaction make important contributions to spikelets per panicle in rice near isogenic (Oryza sativa L.) lines. Journal of Genetics and Genomics 37(12):795–803

    PubMed  Google Scholar 

  • He G, Chen B, Wang X, Li X, Li J, He H, Yang M, Lu L, Qi Y, Wang X, Wang Deng X (2013) Conservation and divergence of transcriptomic and epigenomic variation in maize hybrids. Genome Biol 14(6):R57

    PubMed Central  PubMed  Google Scholar 

  • Hofmann NR (2012) A global view of hybrid vigor: DNA methylation, small RNAs, and gene expression. Plant Cell 24(3):841

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hua JP, Xing YZ, Wu WR, Xu CG, Sun XL, Yu SB, Zhang QF (2003) Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA 100(5):2574–2579

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huang Y, Zhang L, Zhang J, Yuan D, Xu C, Li X, Zhou D, Wang S, Zhang Q (2006) Heterosis and polymorphisms of gene expression in an elite rice hybrid as revealed by a microarray analysis of 9198 unique ESTs. Plant Mol Biol 62(4–5):579–591

  • Hull FH (1945) Recurrent selection for specific combining ability in corn. Agron J 37:134–145

    Google Scholar 

  • Jannink JL, Moreau L, Charmet G, Charcosset A (2009) Overview of QTL detection in plants and tests for synergistic epistatic interactions. Genetica 136(2):225–236

    PubMed  Google Scholar 

  • Jiang K, Liberatore KL, Park SJ, Alvarez JP, Lippman ZB (2013) Tomato yield heterosis is triggered by a dosage sensitivity of the florigen pathway that fine-tunes shoot architecture. PLoS Genet 9(12):e1004043

    PubMed Central  PubMed  Google Scholar 

  • Jiang G, Zeng J, He Y (2014) Analysis of quantitative trait loci affecting chlorophyll content of rice leaves in a double haploid population and two backcross populations. Gene 536(2):287–295

    CAS  PubMed  Google Scholar 

  • Jin H, Hu W, Wei Z, Wan L, Li G, Tan G, Zhu L, He G (2008) Alterations in cytosine methylation and species-specific transcription induced by interspecific hybridization between Oryza sativa and O. officinalis. Theor Appl Genet 117(8):1271–1279

    CAS  PubMed  Google Scholar 

  • Jones DF (1917) Dominance of linked factors as a means of accounting for heterosis. Genetics 2(5):466–479

    CAS  PubMed Central  PubMed  Google Scholar 

  • Juenger TE, Sen S, Stowe KA, Simms EL (2005) Epistasis and genotype-environment interaction for quantitative trait loci affecting flowering time in Arabidopsis thaliana. Genetica 123(1–2):87–105

    CAS  PubMed  Google Scholar 

  • Kenan-Eichler M, Leshkowitz D, Tal L, Noor E, Melamed-Bessudo C, Feldman M, Levy AA (2011) Wheat hybridization and polyploidization results in deregulation of small RNAs. Genetics 188(2):263–272

    CAS  PubMed Central  PubMed  Google Scholar 

  • Krieger U, Lippman ZB, Zamir D (2010) The flowering gene SINGLE FLOWER TRUSS drives heterosis for yield in tomato. Nat Genet 42(5):459–463

    CAS  PubMed  Google Scholar 

  • Lariepe A, Mangin B, Jasson S, Combes V, Dumas F, Jamin P, Lariagon C, Jolivot D, Madur D, Fievet J, Gallais A, Dubreuil P, Charcosset A, Moreau L (2012) The genetic basis of heterosis: multiparental quantitative trait loci mapping reveals contrasted levels of apparent overdominance among traits of agronomical interest in maize (Zea mays L.). Genetics 190(2):795–811

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li ZK, Luo LJ, Mei HW, Wang DL, Shu QY, Tabien R, Zhong DB, Ying CS, Stansel JW, Khush GS, Paterson AH (2001) Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield. Genetics 158(4):1737–1753

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li L, Lu K, Chen Z, Mu T, Hu Z, Li X (2008) Dominance, overdominance and epistasis condition the heterosis in two heterotic rice hybrids. Genetics 180(3):1725–1742

    PubMed Central  PubMed  Google Scholar 

  • Li X, Wei Y, Nettleton D, Brummer EC (2009) Comparative gene expression profiles between heterotic and non-heterotic hybrids of tetraploid Medicago sativa. BMC Plant Biol 9:107

    PubMed Central  PubMed  Google Scholar 

  • Li Y, Varala K, Moose SP, Hudson ME (2012) The inheritance pattern of 24 nt siRNA clusters in arabidopsis hybrids is influenced by proximity to transposable elements. PLoS One 7(10):e47043

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li A, Zhou Y, Jin C, Song W, Chen C, Wang C (2013) LaAP2L1, a heterosis-associated AP2/EREBP transcription factor of Larix, increases organ size and final biomass by affecting cell proliferation in Arabidopsis. Plant Cell Physiol 54(11):1822–1836

    CAS  PubMed  Google Scholar 

  • Lippman ZB, Zamir D (2007) Heterosis: revisiting the magic. Trends Genet 23(2):60–66

    CAS  PubMed  Google Scholar 

  • Liu G, Zhu H, Zhang G, Li L, Ye G (2012) Dynamic analysis of QTLs on tiller number in rice (Oryza sativa L.) with single segment substitution lines. Theor Appl Genet 125(1):143–153

    PubMed  Google Scholar 

  • Long Y, Xia W, Li R, Wang J, Shao M, Feng J, King GJ, Meng J (2011) Epigenetic QTL mapping in Brassica napus. Genetics 189(3):1093–1102

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lu H, Romero-Severson J, Bernardo R (2003) Genetic basis of heterosis explored by simple sequence repeat markers in a random-mated maize population. Theor Appl Genet 107(3):494–502

    CAS  PubMed  Google Scholar 

  • Lu J, Zhang C, Baulcombe DC, Chen ZJ (2011) Maternal siRNAs as regulators of parental genome imbalance and gene expression in endosperm of Arabidopsis seeds. Proc Natl Acad Sci U S A 109(14):5529–5534

    Google Scholar 

  • Luo LJ, Li ZK, Mei HW, Shu QY, Tabien R, Zhong DB, Ying CS, Stansel JW, Khush GS, Paterson AH (2001) Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. II. Grain yield components. Genetics 158(4):1755–1771

    CAS  PubMed Central  PubMed  Google Scholar 

  • Malmberg RL, Held S, Waits A, Mauricio R (2005) Epistasis for fitness-related quantitative traits in Arabidopsis thaliana grown in the field and in the greenhouse. Genetics 171(4):2013–2027

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marcon C, Schutzenmeister A, Schutz W, Madlung J, Piepho HP, Hochholdinger F (2010) Nonadditive protein accumulation patterns in maize (Zea mays L) hybrids during embryo development. Journal of Proteome Research 9(12):6511–6522

    CAS  PubMed  Google Scholar 

  • Matzke M, Kanno T, Huettel B, Daxinger L, Matzke AJ (2007) Targets of RNA-directed DNA methylation. Curr Opin Plant Biol 10(5):512–519

    CAS  PubMed  Google Scholar 

  • McMullen MD, Kresovich S, Villeda HS, Bradbury P, Li H, Sun Q, Flint-Garcia S, Thornsberry J, Acharya C, Bottoms C, Brown P, Browne C, Eller M, Guill K, Harjes C, Kroon D, Lepak N, Mitchell SE, Peterson B, Pressoir G, Romero S, Oropeza Rosas M, Salvo S, Yates H, Hanson M, Jones E, Smith S, Glaubitz JC, Goodman M, Ware D, Holland JB, Buckler ES (2009) Genetic properties of the maize nested association mapping population. Science 325(5941):737–740

    CAS  PubMed  Google Scholar 

  • Meyer RC, Witucka-Wall H, Becher M, Blacha A, Boudichevskaia A, Dormann P, Fiehn O, Friedel S, von Korff M, Lisec J, Melzer M, Repsilber D, Schmidt R, Scholz M, Selbig J, Willmitzer L, Altmann T (2012) Heterosis manifestation during early Arabidopsis seedling development is characterized by intermediate gene expression and enhanced metabolic activity in the hybrids. Plant J 71(4):669–683

    CAS  PubMed  Google Scholar 

  • Moghaddam AMB, Colot V, Mette F, Houben A (2007) Heterosis and chromatin structure: does intraspecific hybridization trigger epigenetic changes? Chromosome Research 15:23–23

    Google Scholar 

  • Mohayeji M, Capriotti AL, Cavaliere C, Piovesana S, Samperi R, Stampachiacchiere S, Toorchi M, Lagana A (2014) Heterosis profile of sunflower leaves: a label free proteomics approach. J Proteomics 99:101–110

    CAS  PubMed  Google Scholar 

  • Naito K, Zhang F, Tsukiyama T, Saito H, Hancock CN, Richardson AO, Okumoto Y, Tanisaka T, Wessler SR (2009) Unexpected consequences of a sudden and massive transposon amplification on rice gene expression. Nature 461(7267):1130–1134

    CAS  PubMed  Google Scholar 

  • Nakamura S, Hosaka K (2010) DNA methylation in diploid inbred lines of potatoes and its possible role in the regulation of heterosis. Theor Appl Genet 120(2):205–214

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ng DW, Lu J, Chen ZJ (2012) Big roles for small RNAs in polyploidy, hybrid vigor, and hybrid incompatibility. Curr Opin Plant Biol 15(2):154–161

    CAS  PubMed  Google Scholar 

  • Ni ZF, Kim ED, Ha MS, Lackey E, Liu JX, Zhang YR, Sun QX, Chen ZJ (2009) Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids. Nature 457(7227):U327–U327

    Google Scholar 

  • Parisod C, Salmon A, Zerjal T, Tenaillon M, Grandbastien MA, Ainouche M (2009) Rapid structural and epigenetic reorganization near transposable elements in hybrid and allopolyploid genomes in Spartina. New Phytologist 184(4):1003–1015

    CAS  PubMed  Google Scholar 

  • Paschold A, Jia Y, Marcon C, Lund S, Larson NB, Yeh CT, Ossowski S, Lanz C, Nettleton D, Schnable PS, Hochholdinger F (2012) Complementation contributes to transcriptome complexity in maize (Zea mays L.) hybrids relative to their inbred parents. Genome Res 22(12):2445–2454

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pea G, Paulstephenraj P, Cane MA, Sardaro ML, Landi P, Morgante M, Porceddu E, Pe ME, Frascaroli E (2009) Recombinant near-isogenic lines: a resource for the mendelization of heterotic QTL in maize. Mol Genet Genomics 281(4):447–457

    CAS  PubMed  Google Scholar 

  • Pea G, Aung HH, Frascaroli E, Landi P, Pe ME (2013) Extensive genomic characterization of a set of near-isogenic lines for heterotic QTL in maize (Zea mays L.). BMC Genomics 14:61

    CAS  PubMed Central  PubMed  Google Scholar 

  • Powers L (1944) An expansion of Jones’s theory for the explanation of heterosis. Am Nat 78:275

    Google Scholar 

  • Qi X, Li ZH, Jiang LL, Yu XM, Ngezahayo F, Liu B (2010) Grain-yield heterosis in Zea mays L. shows positive correlation with parental difference in CHG methylation. Crop Science 50(6):2338–2346

    CAS  Google Scholar 

  • Radoev M, Becker HC, Ecke W (2008) Genetic analysis of heterosis for yield and yield components in rapeseed (Brassica napus L.) by quantitative trait locus mapping. Genetics 179(3):1547–1558

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schon CC, Dhillon BS, Utz HF, Melchinger AE (2010) High congruency of QTL positions for heterosis of grain yield in three crosses of maize. Theor Appl Genet 120(2):321–332

    PubMed  Google Scholar 

  • Semel Y, Nissenbaum J, Menda N, Zinder M, Krieger U, Issman N, Pleban T, Lippman Z, Gur A, Zamir D (2006) Overdominant quantitative trait loci for yield and fitness in tomato. Proc Natl Acad Sci U S A 103(35):12981–12986

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shen H, He H, Li J, Chen W, Wang X, Guo L, Peng Z, He G, Zhong S, Qi Y, Terzaghi W, Deng XW (2012) Genome-wide analysis of DNA methylation and gene expression changes in two Arabidopsis ecotypes and their reciprocal hybrids. Plant Cell 24(3):875–892

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shen G, Zhan W, Chen H, Xing Y (2014) Dominance and epistasis are the main contributors to heterosis for plant height in rice. Plant Sci 215–216:11–18

    PubMed  Google Scholar 

  • Shull GH (1948) What is heterosis? Genetics 33:439–446

    CAS  PubMed Central  PubMed  Google Scholar 

  • Song GS, Zhai HL, Peng YG, Zhang L, Wei G, Chen XY, Xiao YG, Wang L, Chen YJ, Wu B, Chen B, Zhang Y, Chen H, Feng XJ, Gong WK, Liu Y, Yin ZJ, Wang F, Liu GZ, Xu HL, Wei XL, Zhao XL, Ouwerkerk PB, Hankemeier T, Reijmers T, Heijden RV, Lu CM, Wang M, Greef JV, Zhu Z (2010) Comparative transcriptional profiling and preliminary study on heterosis mechanism of super-hybrid rice. Mol Plant 3(6):1012–1025

    CAS  PubMed Central  PubMed  Google Scholar 

  • Song G, Guo Z, Liu Z, Cheng Q, Qu X, Chen R, Jiang D, Liu C, Wang W, Sun Y, Zhang L, Zhu Y, Yang D (2013) Global RNA sequencing reveals that genotype-dependent allele-specific expression contributes to differential expression in rice F1 hybrids. BMC Plant Biol 13:221

    PubMed Central  PubMed  Google Scholar 

  • Sprague GF, Tatum LA (1942) General vs specific combining ability in single crosses of corn. Journal of the American Oil Chemists Society 34:923–932

    Google Scholar 

  • Stokes TL, Kunkel BN, Richards EJ (2002) Epigenetic variation in Arabidopsis disease resistance. Genes Dev 16(2):171–182

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stuber CW, Edwards MD, Wendel JF (1987) Molecular markerfacilitated investigations of quantitative trait loci in maize. 2. factors influencing yield and its component traits. Crop Sci 27:639–648

    Google Scholar 

  • Stuber CW, Lincoln SE, Wolff DW, Helentjaris T, Lander ES (1992) Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics 132(3):823–839

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stupar RM, Gardiner JM, Oldre AG, Haun WJ, Chandler VL, Springer NM (2008) Gene expression analyses in maize inbreds and hybrids with varying levels of heterosis. BMC Plant Biol 8:33

    PubMed Central  PubMed  Google Scholar 

  • Sun QX, Wu LM, Ni ZF, Meng FR, Wang ZK, Lin Z (2004) Differential gene expression patterns in leaves between hybrids and their parental inbreds are correlated with heterosis in a wheat diallel cross. Plant Science 166(3):651–657

    CAS  Google Scholar 

  • Swanson-Wagner RA, Jia Y, DeCook R, Borsuk LA, Nettleton D, Schnable PS (2006) All possible modes of gene action are observed in a global comparison of gene expression in a maize F1 hybrid and its inbred parents. Proc Natl Acad Sci U S A 103(18):6805–6810

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tanabata T, Taguchi-Shiobara F, Kishimoto N, Chechetka S, Shinomura T, Habu Y (2010) A phenomics approach detected differential epigenetic growth regulation between inbreds and their hybrid in Oryza sativa. Molecular Breeding 26(4):729–734

    Google Scholar 

  • Tanksley SD (1993) Mapping polygenes. Annu Rev Genet 27:205–233

    CAS  PubMed  Google Scholar 

  • Teyssier E, Bernacchia G, Maury S, How Kit A, Stammitti-Bert L, Rolin D, Gallusci P (2008) Tissue dependent variations of DNA methylation and endoreduplication levels during tomato fruit development and ripening. Planta 228(3):391–399

    CAS  PubMed  Google Scholar 

  • Thiemann A, Fu J, Schrag TA, Melchinger AE, Frisch M, Scholten S (2010) Correlation between parental transcriptome and field data for the characterization of heterosis in Zea mays L. Theor Appl Genet 120(2):401–413

    CAS  PubMed  Google Scholar 

  • Uzarowska A, Keller B, Piepho HP, Schwarz G, Ingvardsen C, Wenzel G, Lubberstedt T (2007) Comparative expression profiling in meristems of inbred-hybrid triplets of maize based on morphological investigations of heterosis for plant height. Plant Mol Biol 63(1):21–34

    CAS  PubMed  Google Scholar 

  • Williams W (1959) Heterosis and the genetics of complex characters. Nature 184:527–530

    CAS  PubMed  Google Scholar 

  • Xiao J, Li J, Yuan L, Tanksley SD (1995) Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers. Genetics 140(2):745–754

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xie F, He Z, Esguerra MQ, Qiu F, Ramanathan V (2014) Determination of heterotic groups for tropical Indica hybrid rice germplasm. Theor Appl Genet 127(2):407–417

    Google Scholar 

  • Xing GF, Guo GG, Yao YY, Peng HR, Sun QX, Ni ZF (2010) Identification and characterization of a novel hybrid upregulated long non-protein coding RNA in maize seedling roots. Plant Science 179(4):356–363

    CAS  Google Scholar 

  • Yu SB, Li JX, Xu CG, Tan YF, Gao YJ, Li XH, Zhang Q, Saghai Maroof MA (1997) Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci U S A 94(17):9226–9231

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhai R, Feng Y, Wang H, Zhan X, Shen X, Wu W, Zhang Y, Chen D, Dai G, Yang Z, Cao L, Cheng S (2013a) Transcriptome analysis of rice root heterosis by RNA-Seq. BMC Genomics 14:19

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhai R, Feng Y, Zhan X, Shen X, Wu W, Yu P, Zhang Y, Chen D, Wang H, Lin Z, Cao L, Cheng S (2013b) Identification of transcriptome SNPs for assessing allele-specific gene expression in a super-hybrid rice Xieyou9308. PLoS One 8(4):e60668

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang C, Yin Y, Zhang A, Lu Q, Wen X, Zhu Z, Zhang L, Lu C (2012) Comparative proteomic study reveals dynamic proteome changes between superhybrid rice LYP9 and its parents at different developmental stages. J Plant Physiol 169(4):387–398

    CAS  PubMed  Google Scholar 

  • Zhao XX, Chai Y, Liu B (2007) Epigenetic inheritance and variation of DNA methylation level and pattern in maize intra-specific hybrids. Plant Science 172(5):930–938

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported financially by Educational Commission of Jiangxi Province of China (code: GJJ13268) and Jiangxi Science and Technology Support Program (code: 20132BBF60013). A Hayward gratefully acknowledges support from a University of Queensland Early Career Researcher Award (2010002261) and the UQ New Staff Research Start-up Fund. Jiqiang Li gratefully acknowledges support from Youth Program of Gansu Science and Technology Fund in the eighth batch of science and technology plan, 2012 (code: 1208RJYG042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donghui Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, D., Xiao, M., Hayward, A. et al. What is crop heterosis: new insights into an old topic. J Appl Genetics 56, 1–13 (2015). https://doi.org/10.1007/s13353-014-0231-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13353-014-0231-z

Keywords

Navigation