Skip to main content
Log in

Mouse models of atherosclerosis: explaining critical roles of lipid metabolism and inflammation

  • Animal Genetics • Review
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

Atherosclerosis is the most common cause of death globally. It is a complex disease involving morphological and cellular changes in vascular walls. Studying molecular mechanism of the disease is hindered by disease complexity and lack of robust noninvasive diagnostics in human. Mouse models are the most popular animal models that allow researchers to study the mechanism of disease progression. In this review we discuss the advantage and development of mouse as a model for atherosclerotic research. Along with commonly used models, this review discusses strains that are used to study the role of two critical processes associated with the disease—lipid metabolism and inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Bentzon JF, Sondergaard CS, Kassem M, Falk E (2007) Smooth muscle cells healing atherosclerotic plaque disruptions are of local, not blood, origin in apolipoprotein E knockout mice. Circulation 116(18):2053–2061

    Article  PubMed  CAS  Google Scholar 

  • Bourdillon MC, Poston RN, Covacho C, Chignier E, Bricca G, McGregor JL (2000) ICAM-1 deficiency reduces atherosclerotic lesions in double-knockout mice (ApoE(−/−)/ICAM-1(−/−)) fed a fat or a chow diet. Arterioscler Thromb Vasc Biol 20(12):2630–2635

    Article  PubMed  CAS  Google Scholar 

  • Bourdillon MC, Randon J, Barek L, Zibara K, Covacho C, Poston RN, Chignier E, McGregor JL (2006) Reduced atherosclerotic lesion size in P-selectin deficient apolipoprotein E-knockout mice fed a chow but not a fat diet. J Biomed Biotechnol 2006(2):49193

    PubMed  Google Scholar 

  • Branen L, Hovgaard L, Nitulescu M, Bengtsson E, Nilsson J, Jovinge S (2004) Inhibition of tumor necrosis factor-alpha reduces atherosclerosis in apolipoprotein E knockout mice. Arterioscler Thromb Vasc Biol 24(11):2137–2142

    Article  PubMed  CAS  Google Scholar 

  • Calara F, Silvestre M, Casanada F, Yuan N, Napoli C, Palinski W (2001) Spontaneous plaque rupture and secondary thrombosis in apolipoprotein E-deficient and LDL receptor-deficient mice. J Pathol 195(2):257–263

    Article  PubMed  CAS  Google Scholar 

  • Callow MJ, Verstuyft J, Tangirala R, Palinski W, Rubin EM (1995) Atherogenesis in transgenic mice with human apolipoprotein B and lipoprotein (a). J Clin Invest 96(3):1639–1646

    Article  PubMed  CAS  Google Scholar 

  • Campbell IC, Weiss D, Suever JD, Virmani R, Veneziani A, Vito RP, Oshinski JN, Taylor WR (2012) Biomechanical modeling and morphology analysis indicates plaque rupture due to mechanical failure unlikely in atherosclerosis-prone mice. Am J Physiol Heart Circ Physiol. doi:10.1152/ajpheart.00620.2012

  • Cohen RD, Castellani LW, Qiao JH, Van Lenten BJ, Lusis AJ, Reue K (1997) Reduced aortic lesions and elevated high density lipoprotein levels in transgenic mice overexpressing mouse apolipoprotein A-IV. J Clin Invest 99(8):1906–1916

    Article  PubMed  CAS  Google Scholar 

  • Combadiere C, Potteaux S, Gao JL, Esposito B, Casanova S, Lee EJ, Debre P, Tedgui A, Murphy PM, Mallat Z (2003) Decreased atherosclerotic lesion formation in CX3CR1/apolipoprotein E double knockout mice. Circulation 107(7):1009–1016

    Article  PubMed  CAS  Google Scholar 

  • Crauwels HM, Van Hove CE, Holvoet P, Herman AG, Bult H (2003) Plaque-associated endothelial dysfunction in apolipoprotein E-deficient mice on a regular diet. Effect of human apolipoprotein AI. Cardiovasc Res 59(1):189–199

    Article  PubMed  CAS  Google Scholar 

  • Cybulsky MI, Iiyama K, Li H, Zhu S, Chen M, Iiyama M, Davis V, Gutierrez-Ramos JC, Connelly PW, Milstone DS (2001) A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. J Clin Invest 107(10):1255–1262

    Article  PubMed  CAS  Google Scholar 

  • Cyrus T, Witztum JL, Rader DJ, Tangirala R, Fazio S, Linton MF, Funk CD (1999) Disruption of the 12/15-lipoxygenase gene diminishes atherosclerosis in apo E-deficient mice. J Clin Invest 103(11):1597–1604

    Article  PubMed  CAS  Google Scholar 

  • Dawson TC, Kuziel WA, Osahar TA, Maeda N (1999) Absence of CC chemokine receptor-2 reduces atherosclerosis in apolipoprotein E-deficient mice. Atherosclerosis 143(1):205–211

    Article  PubMed  CAS  Google Scholar 

  • Dong ZM, Chapman SM, Brown AA, Frenette PS, Hynes RO, Wagner DD (1998) The combined role of P- and E-selectins in atherosclerosis. J Clin Invest 102(1):145–152

    Article  PubMed  CAS  Google Scholar 

  • Elhage R, Jawien J, Rudling M, Ljunggren HG, Takeda K, Akira S, Bayard F, Hansson GK (2003) Reduced atherosclerosis in interleukin-18 deficient apolipoprotein E-knockout mice. Cardiovasc Res 59(1):234–240

    Article  PubMed  CAS  Google Scholar 

  • Escola-Gil JC, Julve J, Marzal-Casacuberta A, Ordonez-Llanos J, Gonzalez-Sastre F, Blanco-Vaca F (2000) Expression of human apolipoprotein A-II in apolipoprotein E-deficient mice induces features of familial combined hyperlipidemia. J Lipid Res 41(8):1328–1338

    PubMed  CAS  Google Scholar 

  • Farese RV Jr, Veniant MM, Cham CM, Flynn LM, Pierotti V, Loring JF, Traber M, Ruland S, Stokowski RS, Huszar D, Young SG (1996) Phenotypic analysis of mice expressing exclusively apolipoprotein B48 or apolipoprotein B100. Proc Natl Acad Sci U S A 93(13):6393–6398

    Article  PubMed  CAS  Google Scholar 

  • Fazio S, Sanan DA, Lee YL, Ji ZS, Mahley RW, Rall SC Jr (1994) Susceptibility to diet-induced atherosclerosis in transgenic mice expressing a dysfunctional human apolipoprotein E(Arg 112, Cys142). Arterioscler Thromb 14(11):1873–1879

    Article  PubMed  CAS  Google Scholar 

  • Finking G, Hanke H (1997) Nikolaj Nikolajewitsch Anitschkow (1885–1964) established the cholesterol-fed rabbit as a model for atherosclerosis research. Atherosclerosis 135(1):1–7

    Article  PubMed  CAS  Google Scholar 

  • George J, Afek A, Shaish A, Levkovitz H, Bloom N, Cyrus T, Zhao L, Funk CD, Sigal E, Harats D (2001) 12/15-Lipoxygenase gene disruption attenuates atherogenesis in LDL receptor-deficient mice. Circulation 104(14):1646–1650

    Article  PubMed  CAS  Google Scholar 

  • Getz GS, Reardon CA (2006) Diet and murine atherosclerosis. Arterioscler Thromb Vasc Biol 26(2):242–249

    Article  PubMed  CAS  Google Scholar 

  • Getz GS, Reardon CA (2012) Animal models of atherosclerosis. Arterioscler Thromb Vasc Biol 32(5):1104–1115

    Article  PubMed  CAS  Google Scholar 

  • Gu L, Okada Y, Clinton SK, Gerard C, Sukhova GK, Libby P, Rollins BJ (1998) Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol Cell 2(2):275–281

    Article  PubMed  CAS  Google Scholar 

  • Gupta S, Pablo AM, Jiang X, Wang N, Tall AR, Schindler C (1997) IFN-gamma potentiates atherosclerosis in ApoE knock-out mice. J Clin Invest 99(11):2752–2761

    Article  PubMed  CAS  Google Scholar 

  • Hansson GK, Libby P (2006) The immune response in atherosclerosis: a double-edged sword. Nat Rev Immunol 6(7):508–519

    Article  PubMed  CAS  Google Scholar 

  • Harats D, Shaish A, George J, Mulkins M, Kurihara H, Levkovitz H, Sigal E (2000) Overexpression of 15-lipoxygenase in vascular endothelium accelerates early atherosclerosis in LDL receptor-deficient mice. Arterioscler Thromb Vasc Biol 20(9):2100–2105

    Article  PubMed  CAS  Google Scholar 

  • Hechler B, Freund M, Ravanat C, Magnenat S, Cazenave JP, Gachet C (2008) Reduced atherosclerotic lesions in P2Y1/apolipoprotein E double-knockout mice: the contribution of non-hematopoietic-derived P2Y1 receptors. Circulation 118(7):754–763

    Article  PubMed  CAS  Google Scholar 

  • Ishibashi S, Goldstein JL, Brown MS, Herz J, Burns DK (1994) Massive xanthomatosis and atherosclerosis in cholesterol-fed low density lipoprotein receptor-negative mice. J Clin Invest 93(5):1885–1893

    Article  PubMed  CAS  Google Scholar 

  • Jawien J (2012) The role of an experimental model of atherosclerosis: apoE-knockout mice in developing new drugs against atherogenesis. Curr Pharm Biotechnol 13(13):2435–2439

    Google Scholar 

  • Jawien J, Nastalek P, Korbut R (2004) Mouse models of experimental atherosclerosis. J Physiol Pharmacol 55(3):503–517

    PubMed  CAS  Google Scholar 

  • Johnson JL, Jackson CL (2001) Atherosclerotic plaque rupture in the apolipoprotein E knockout mouse. Atherosclerosis 154(2):399–406

    Article  PubMed  CAS  Google Scholar 

  • Johnson RC, Chapman SM, Dong ZM, Ordovas JM, Mayadas TN, Herz J, Hynes RO, Schaefer EJ, Wagner DD (1997) Absence of P-selectin delays fatty streak formation in mice. J Clin Invest 99(5):1037–1043

    Article  PubMed  CAS  Google Scholar 

  • Kolodgie FD, Gold HK, Burke AP, Fowler DR, Kruth HS, Weber DK, Farb A, Guerrero LJ, Hayase M, Kutys R, Narula J, Finn AV, Virmani R (2003) Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med 349(24):2316–2325

    Article  PubMed  CAS  Google Scholar 

  • Koltsova EK, Kim G, Lloyd KM, Saris CJ, von Vietinghoff S, Kronenberg M, Ley K (2012) Interleukin-27 receptor limits atherosclerosis in Ldlr−/−mice. Circ Res 111(10):1274–1285

    Article  PubMed  CAS  Google Scholar 

  • Kristensen SD, Ravn HB, Falk E (1997) Insights into the pathophysiology of unstable coronary artery disease. Am J Cardiol 80(5A):5E–9E

    Article  PubMed  CAS  Google Scholar 

  • Kuchibhotla S, Vanegas D, Kennedy DJ, Guy E, Nimako G, Morton RE, Febbraio M (2008) Absence of CD36 protects against atherosclerosis in ApoE knock-out mice with no additional protection provided by absence of scavenger receptor A I/II. Cardiovasc Res 78(1):185–196

    Article  PubMed  CAS  Google Scholar 

  • Langheinrich AC, Michniewicz A, Sedding DG, Walker G, Beighley PE, Rau WS, Bohle RM, Ritman EL (2006) Correlation of vasa vasorum neovascularization and plaque progression in aortas of apolipoprotein E(−/−)/low-density lipoprotein(−/−) double knockout mice. Arterioscler Thromb Vasc Biol 26(2):347–352

    Article  PubMed  CAS  Google Scholar 

  • Lemaitre V, O’Byrne TK, Borczuk AC, Okada Y, Tall AR, D’Armiento J (2001) ApoE knockout mice expressing human matrix metalloproteinase-1 in macrophages have less advanced atherosclerosis. J Clin Invest 107(10):1227–1234

    Article  PubMed  CAS  Google Scholar 

  • Libby P, Ridker PM, Hansson GK (2011) Progress and challenges in translating the biology of atherosclerosis. Nature 473(7347):317–325

    Article  PubMed  CAS  Google Scholar 

  • Linton MF, Farese RV Jr, Chiesa G, Grass DS, Chin P, Hammer RE, Hobbs HH, Young SG (1993) Transgenic mice expressing high plasma concentrations of human apolipoprotein B100 and lipoprotein(a). J Clin Invest 92(6):3029–3037

    Article  PubMed  CAS  Google Scholar 

  • Linton MF, Atkinson JB, Fazio S (1995) Prevention of atherosclerosis in apolipoprotein E-deficient mice by bone marrow transplantation. Science 267(5200):1034–1037

    Article  PubMed  CAS  Google Scholar 

  • Liu XL, Zhang PF, Ding SF, Wang Y, Zhang M, Zhao YX, Ni M, Zhang Y (2012) Local gene silencing of monocyte chemoattractant protein-1 prevents vulnerable plaque disruption in apolipoprotein E-knockout mice. PLoS One 7(3):e33497

    Article  PubMed  CAS  Google Scholar 

  • Lutgens E, Gorelik L, Daemen MJ, de Muinck ED, Grewal IS, Koteliansky VE, Flavell RA (1999) Requirement for CD154 in the progression of atherosclerosis. Nat Med 5(11):1313–1316

    Article  PubMed  CAS  Google Scholar 

  • Luttun A, Lutgens E, Manderveld A, Maris K, Collen D, Carmeliet P, Moons L (2004) Loss of matrix metalloproteinase-9 or matrix metalloproteinase-12 protects apolipoprotein E-deficient mice against atherosclerotic media destruction but differentially affects plaque growth. Circulation 109(11):1408–1414

    Article  PubMed  CAS  Google Scholar 

  • Ma Y, Wang W, Zhang J, Lu Y, Wu W, Yan H, Wang Y (2012) Hyperlipidemia and atherosclerotic lesion development in Ldlr-deficient mice on a long-term high-fat diet. PLoS One 7(4):e35835

    Article  PubMed  CAS  Google Scholar 

  • Machal J, Vasku A, Kincl V, Hlavna M, Bartakova V, Jurajda M, Meluzin J (2012) Association between three single nucleotide polymorphisms in eotaxin (CCL 11) gene, hexanucleotide repetition upstream, severity and course of coronary atherosclerosis. J Appl Genet 53(3):271–278

    Article  PubMed  CAS  Google Scholar 

  • Mahley RW, Weisgraber KH, Huang Y (2009) Apolipoprotein E: structure determines function, from atherosclerosis to Alzheimer’s disease to AIDS. J Lipid Res 50(Suppl):S183–S188

    Article  PubMed  Google Scholar 

  • Marotti KR, Castle CK, Boyle TP, Lin AH, Murray RW, Melchior GW (1993) Severe atherosclerosis in transgenic mice expressing simian cholesteryl ester transfer protein. Nature 364(6432):73–75

    Article  PubMed  CAS  Google Scholar 

  • Michelsen KS, Wong MH, Shah PK, Zhang W, Yano J, Doherty TM, Akira S, Rajavashisth TB, Arditi M (2004) Lack of Toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E. Proc Natl Acad Sci U S A 101(29):10679–10684

    Article  PubMed  CAS  Google Scholar 

  • Naiki Y, Sorrentino R, Wong MH, Michelsen KS, Shimada K, Chen S, Yilmaz A, Slepenkin A, Schroder NW, Crother TR, Bulut Y, Doherty TM, Bradley M, Shaposhnik Z, Peterson EM, Tontonoz P, Shah PK, Arditi M (2008) TLR/MyD88 and liver X receptor alpha signaling pathways reciprocally control Chlamydia pneumoniae-induced acceleration of atherosclerosis. J Immunol 181(10):7176–7185

    PubMed  CAS  Google Scholar 

  • Ni M, Wang Y, Zhang M, Zhang PF, Ding SF, Liu CX, Liu XL, Zhao YX, Zhang Y (2009) Atherosclerotic plaque disruption induced by stress and lipopolysaccharide in apolipoprotein E knockout mice. Am J Physiol Heart Circ Physiol 296(5):H1598–H1606

    Article  PubMed  CAS  Google Scholar 

  • Nishina PM, Verstuyft J, Paigen B (1990) Synthetic low and high fat diets for the study of atherosclerosis in the mouse. J Lipid Res 31(5):859–869

    PubMed  CAS  Google Scholar 

  • Olszanecki R, Jawien J, Gajda M, Mateuszuk L, Gebska A, Korabiowska M, Chlopicki S, Korbut R (2005) Effect of curcumin on atherosclerosis in apoE/LDLR-double knockout mice. J Physiol Pharmacol 56(4):627–635

    PubMed  CAS  Google Scholar 

  • Ovchinnikova O, Robertson AK, Wagsater D, Folco EJ, Hyry M, Myllyharju J, Eriksson P, Libby P, Hansson GK (2009) T-cell activation leads to reduced collagen maturation in atherosclerotic plaques of Apoe(−/−) mice. Am J Pathol 174(2):693–700

    Article  PubMed  CAS  Google Scholar 

  • Paigen B, Holmes PA, Mitchell D, Albee D (1987) Comparison of atherosclerotic lesions and HDL-lipid levels in male, female, and testosterone-treated female mice from strains C57BL/6, BALB/c, and C3H. Atherosclerosis 64(2–3):215–221

    Article  PubMed  CAS  Google Scholar 

  • Paszty C, Maeda N, Verstuyft J, Rubin EM (1994) Apolipoprotein AI transgene corrects apolipoprotein E deficiency-induced atherosclerosis in mice. J Clin Invest 94(2):899–903

    Article  PubMed  CAS  Google Scholar 

  • Piedrahita JA, Zhang SH, Hagaman JR, Oliver PM, Maeda N (1992) Generation of mice carrying a mutant apolipoprotein E gene inactivated by gene targeting in embryonic stem cells. Proc Natl Acad Sci U S A 89(10):4471–4475

    Article  PubMed  CAS  Google Scholar 

  • Reardon CA, Blachowicz L, Lukens J, Nissenbaum M, Getz GS (2003) Genetic background selectively influences innominate artery atherosclerosis: immune system deficiency as a probe. Arterioscler Thromb Vasc Biol 23(8):1449–1454

    Article  PubMed  CAS  Google Scholar 

  • Reddick RL, Zhang SH, Maeda N (1998) Aortic atherosclerotic plaque injury in apolipoprotein E deficient mice. Atherosclerosis 140(2):297–305

    Article  PubMed  CAS  Google Scholar 

  • Robertson AK, Rudling M, Zhou X, Gorelik L, Flavell RA, Hansson GK (2003) Disruption of TGF-beta signaling in T cells accelerates atherosclerosis. J Clin Invest 112(9):1342–1350

    PubMed  CAS  Google Scholar 

  • Rong S, Cao Q, Liu M, Seo J, Jia L, Boudyguina E, Gebre AK, Colvin PL, Smith TL, Murphy RC, Mishra N, Parks JS (2012) Macrophage 12/15 lipoxygenase expression increases plasma and hepatic lipid levels and exacerbates atherosclerosis. J Lipid Res 53(4):686–695

    Article  PubMed  CAS  Google Scholar 

  • Rubin EM, Ishida BY, Clift SM, Krauss RM (1991) Expression of human apolipoprotein A-I in transgenic mice results in reduced plasma levels of murine apolipoprotein A-I and the appearance of two new high density lipoprotein size subclasses. Proc Natl Acad Sci U S A 88(2):434–438

    Article  PubMed  CAS  Google Scholar 

  • Schiller NK, Kubo N, Boisvert WA, Curtiss LK (2001) Effect of gamma-irradiation and bone marrow transplantation on atherosclerosis in LDL receptor-deficient mice. Arterioscler Thromb Vasc Biol 21(10):1674–1680

    Article  PubMed  CAS  Google Scholar 

  • Sehayek E, Shefer S, Nguyen LB, Ono JG, Merkel M, Breslow JL (2000) Apolipoprotein E regulates dietary cholesterol absorption and biliary cholesterol excretion: studies in C57BL/6 apolipoprotein E knockout mice. Proc Natl Acad Sci U S A 97(7):3433–3437

    Article  PubMed  CAS  Google Scholar 

  • Sjoland H, Eitzman DT, Gordon D, Westrick R, Nabel EG, Ginsburg D (2000) Atherosclerosis progression in LDL receptor-deficient and apolipoprotein E-deficient mice is independent of genetic alterations in plasminogen activator inhibitor-1. Arterioscler Thromb Vasc Biol 20(3):846–852

    Article  PubMed  CAS  Google Scholar 

  • Spagnoli LG, Bonanno E, Sangiorgi G, Mauriello A (2007) Role of inflammation in atherosclerosis. J Nucl Med 48(11):1800–1815

    Article  PubMed  Google Scholar 

  • Stewart CR, Stuart LM, Wilkinson K, van Gils JM, Deng J, Halle A, Rayner KJ, Boyer L, Zhong R, Frazier WA, Lacy-Hulbert A, El Khoury J, Golenbock DT, Moore KJ (2010) CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat Immunol 11(2):155–161

    Article  PubMed  CAS  Google Scholar 

  • Suzuki H, Kurihara Y, Takeya M, Kamada N, Kataoka M, Jishage K, Ueda O, Sakaguchi H, Higashi T, Suzuki T, Takashima Y, Kawabe Y, Cynshi O, Wada Y, Honda M, Kurihara H, Aburatani H, Doi T, Matsumoto A, Azuma S, Noda T, Toyoda Y, Itakura H, Yazaki Y, Kodama T et al (1997) A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection. Nature 386(6622):292–296

    Article  PubMed  CAS  Google Scholar 

  • Tennent GA, Hutchinson WL, Kahan MC, Hirschfield GM, Gallimore JR, Lewin J, Sabin CA, Dhillon AP, Pepys MB (2008) Transgenic human CRP is not pro-atherogenic, pro-atherothrombotic or pro-inflammatory in apoE−/− mice. Atherosclerosis 196(1):248–255

    Article  PubMed  CAS  Google Scholar 

  • Tobias PS, Curtiss LK (2007) Toll-like receptors in atherosclerosis. Biochem Soc Trans 35(Pt 6):1453–1455

    Article  PubMed  CAS  Google Scholar 

  • Vaisman BL, Klein HG, Rouis M, Berard AM, Kindt MR, Talley GD, Meyn SM, Hoyt RF Jr, Marcovina SM, Albers JJ et al (1995) Overexpression of human lecithin cholesterol acyltransferase leads to hyperalphalipoproteinemia in transgenic mice. J Biol Chem 270(20):12269–12275

    Article  PubMed  CAS  Google Scholar 

  • van Vlijmen BJ, van den Maagdenberg AM, Gijbels MJ, van der Boom H, HogenEsch H, Frants RR, Hofker MH, Havekes LM (1994) Diet-induced hyperlipoproteinemia and atherosclerosis in apolipoprotein E3-Leiden transgenic mice. J Clin Invest 93(4):1403–1410

    Article  PubMed  Google Scholar 

  • Veniant MM, Pierotti V, Newland D, Cham CM, Sanan DA, Walzem RL, Young SG (1997) Susceptibility to atherosclerosis in mice expressing exclusively apolipoprotein B48 or apolipoprotein B100. J Clin Invest 100(1):180–188

    Article  PubMed  CAS  Google Scholar 

  • Verma S, Devaraj S, Jialal I (2006) Is C-reactive protein an innocent bystander or proatherogenic culprit? C-reactive protein promotes atherothrombosis. Circulation 113(17):2135–2150

    PubMed  Google Scholar 

  • Weber C, Noels H (2011) Atherosclerosis: current pathogenesis and therapeutic options. Nat Med 17(11):1410–1422

    Article  PubMed  CAS  Google Scholar 

  • Xiao Q (2001) Genetically manipulated models of atherosclerosis in mice. Methods Mol Med 52:15–26

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges the Start-up grant from Tezpur University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupak Mukhopadhyay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukhopadhyay, R. Mouse models of atherosclerosis: explaining critical roles of lipid metabolism and inflammation. J Appl Genetics 54, 185–192 (2013). https://doi.org/10.1007/s13353-013-0134-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13353-013-0134-4

Keywords

Navigation