Skip to main content

Advertisement

Log in

Parametric proportional hazards model for mapping genomic imprinting of survival traits

  • Animal Genetics • Original Paper
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

A number of imprinted genes have been observed in plants, animals and humans. They not only control growth and developmental traits, but may also be responsible for survival traits. Based on the Cox proportional hazards (PH) model, we constructed a general parametric model for dissecting genomic imprinting, in which a baseline hazard function is selectable for fitting the effects of imprinted quantitative trait loci (iQTL) genotypes on the survival curve. The expectation–maximisation (EM) algorithm is derived for solving the maximum likelihood estimates of iQTL parameters. The imprinting patterns of the detected iQTL are statistically tested under a series of null hypotheses. The Bayesian information criterion (BIC) model selection criterion is employed to choose an optimal baseline hazard function with maximum likelihood and parsimonious parameterisation. We applied the proposed approach to analyse the published data in an F2 population of mice and concluded that, among five commonly used survival distributions, the log-logistic distribution is the optimal baseline hazard function for the survival time of hyperoxic acute lung injury (HALI). Under this optimal model, five QTL were detected, among which four are imprinted in different imprinting patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Broman KW (2003) Mapping quantitative trait loci in the case of a spike in the phenotype distribution. Genetics 163:1169–1175

    PubMed  Google Scholar 

  • Cheverud JM, Hager R, Roseman C, Fawcett G, Wang B, Wolf JB (2008) Genomic imprinting effects on adult body composition in mice. Proc Natl Acad Sci U S A 105:4253–4258

    Article  PubMed  CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed  CAS  Google Scholar 

  • Constância M, Kelsey G, Reik W (2004) Resourceful imprinting. Nature 432:53–57

    Article  PubMed  Google Scholar 

  • Cox DR, Oakes D (1984) Analysis of survival data. Chapman and Hall, London

    Google Scholar 

  • Cui Y, Lu Q, Cheverud JM, Littell RC, Wu R (2006) Model for mapping imprinted quantitative trait loci in an inbred F2 design. Genomics 87:543–551

    Article  PubMed  CAS  Google Scholar 

  • de Koning DJ, Rattink AP, Harlizius B, van Arendonk JA, Brascamp EW, Groenen MA (2000) Genome-wide scan for body composition in pigs reveals important role of imprinting. Proc Natl Acad Sci U S A 97:7947–7950

    Article  PubMed  Google Scholar 

  • de Koning DJ, Bovenhuis H, van Arendonk JA (2002) On the detection of imprinted quantitative trait loci in experimental crosses of outbred species. Genetics 161:931–938

    PubMed  Google Scholar 

  • DeChiara TM, Robertson EJ, Efstratiadis A (1991) Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64:849–859

    Article  PubMed  CAS  Google Scholar 

  • Diao G, Lin DY (2005) Semiparametric methods for mapping quantitative trait loci with censored data. Biometrics 61:789–798

    Article  PubMed  Google Scholar 

  • Diao G, Lin DY, Zou F (2004) Mapping quantitative trait loci with censored observations. Genetics 168:1689–1698

    Article  PubMed  CAS  Google Scholar 

  • Efron B (1977) The efficiency of Cox’s likelihood function for censored data. J Am Stat Assoc 72:557–565

    Article  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Longman, London

    Google Scholar 

  • Fang Y (2006) A note on QTL detecting for censored traits. Genet Sel Evol 38:221–229

    Article  PubMed  CAS  Google Scholar 

  • Hayashi T, Awata T (2008) A Bayesian method for simultaneously detecting Mendelian and imprinted quantitative trait loci in experimental crosses of outbred species. Genetics 178:527–538

    Article  PubMed  Google Scholar 

  • Isles AR, Holland AJ (2005) Imprinted genes and mother–offspring interactions. Early Hum Dev 81:73–77

    Article  PubMed  Google Scholar 

  • Kalbfleisch JD, Prentice RL (2002) The statistical analysis of failure time data, 2nd edn. Wiley, New York

    Book  Google Scholar 

  • Knott SA, Elsen JM, Haley CS (1996) Methods for multiple-marker mapping of quantitative trait loci in half-sib populations. Theor Appl Genet 93:71–80

    Article  Google Scholar 

  • Knott SA, Marklund L, Haley CS, Andersson K, Davies W, Ellegren H, Fredholm M, Hansson I, Hoyheim B, Lundström K, Moller M, Andersson L (1998) Multiple marker mapping of quantitative trait loci in a cross between outbred wild boar and large white pigs. Genetics 149:1069–1080

    PubMed  CAS  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    PubMed  CAS  Google Scholar 

  • Mantey C, Brockmann GA, Kalm E, Reinsch N (2005) Mapping and exclusion mapping of genomic imprinting effects in mouse F2 families. J Hered 96:329–338

    Article  PubMed  CAS  Google Scholar 

  • Moreno CR, Elsen JM, Le Roy P, Ducrocq V (2005) Interval mapping methods for detecting QTL affecting survival and time-to-event phenotypes. Genet Res 85:139–149

    Article  PubMed  CAS  Google Scholar 

  • Nardi A, Schemper M (2003) Comparing Cox and parametric models in clinical studies. Stat Med 22:3597–3610

    Article  PubMed  Google Scholar 

  • Oakes D (1977) The asymptotic information in censored survival data. Biometrika 64:441–448

    Article  Google Scholar 

  • Pfeifer K (2000) Mechanisms of genomic imprinting. Am J Hum Genet 67:777–787

    Article  PubMed  CAS  Google Scholar 

  • Prows DR, Hafertepen AP, Gibbons WJ Jr, Winterberg AV, Nick TG (2007a) A genetic mouse model to investigate hyperoxic acute lung injury survival. Physiol Genomics 30:262–270

    Article  PubMed  CAS  Google Scholar 

  • Prows DR, Hafertepen AP, Winterberg AV, Gibbons WJ Jr, Liu C, Nick TG (2007b) Genetic analysis of hyperoxic acute lung injury survival in reciprocal intercross mice. Physiol Genomics 30:271–281

    Article  PubMed  CAS  Google Scholar 

  • Rao S, Xu S (1998) Mapping quantitative trait loci for categorical traits in four-way crosses. Heredity 81:214–224

    Google Scholar 

  • Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464

    Article  Google Scholar 

  • Symons RC, Daly MJ, Fridlyand J, Speed TP, Cook WD, Gerondakis S, Harris AW, Foote SJ (2002) Multiple genetic loci modify susceptibility to plasmacytoma-related morbidity in E(mu)-v-abl transgenic mice. Proc Natl Acad Sci U S A 99:11299–11304

    Article  PubMed  CAS  Google Scholar 

  • Szyda J, Morek-Kopeć M, Komisarek J, Zarnecki A (2011) Evaluating markers in selected genes for association with functional longevity of dairy cattle. BMC Genet 12:30

    Article  PubMed  CAS  Google Scholar 

  • Tuiskula-Haavisto M, de Koning DJ, Honkatukia M, Schulman NF, Mäki-Tanila A, Vilkki J (2004) Quantitative trait loci with parent-of-origin effects in chicken. Genet Res 84:57–66

    Article  PubMed  CAS  Google Scholar 

  • Tycko B, Morison IM (2002) Physiological functions of imprinted genes. J Cell Physiol 192:245–258

    Article  PubMed  CAS  Google Scholar 

  • Yang R, Wang X, Wu Z, Prows DR, Lin M (2010) Bayesian model selection for characterizing genomic imprinting effects and patterns. Bioinformatics 26:235–241

    Article  PubMed  CAS  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the 12th “Five-Year” National Science and Technology Support Project (2011BAD28B04), basic research fund programme 2010jc-2 of state-level public welfare scientific research institutions of the Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), and the National Natural Science Foundation of China (30972077 and 31172190).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Runqing Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, H., Liu, Y., Zhang, T. et al. Parametric proportional hazards model for mapping genomic imprinting of survival traits. J Appl Genetics 54, 79–88 (2013). https://doi.org/10.1007/s13353-012-0120-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13353-012-0120-2

Keywords

Navigation