Skip to main content
Log in

Modelling QTL effect on BTA06 using random regression test day models

  • Animal Genetics • Original Paper
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

In statistical models, a quantitative trait locus (QTL) effect has been incorporated either as a fixed or as a random term, but, up to now, it has been mainly considered as a time-independent variable. However, for traits recorded repeatedly, it is very interesting to investigate the variation of QTL over time. The major goal of this study was to estimate the position and effect of QTL for milk, fat, protein yields and for somatic cell score based on test day records, while testing whether the effects are constant or variable throughout lactation. The analysed data consisted of 23 paternal half-sib families (716 daughters of 23 sires) of Chinese Holstein-Friesian cattle genotyped at 14 microsatellites located in the area of the casein loci on BTA6. A sequence of three models was used: (i) a lactation model, (ii) a random regression model with a QTL constant in time and (iii) a random regression model with a QTL variable in time. The results showed that, for each production trait, at least one significant QTL exists. For milk and protein yields, the QTL effect was variable in time, while for fat yield, each of the three models resulted in a significant QTL effect. When a QTL is incorporated into a model as a constant over time, its effect is averaged over lactation stages and may, thereby, be difficult or even impossible to be detected. Our results showed that, in such a situation, only a longitudinal model is able to identify loci significantly influencing trait variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alexander LJ, Stewart AF, Mackinlay AG, Kapelinskaya TV, Tkach TM, Gorodetsky SI (1988) Isolation and characterization of the bovine kappa-casein gene. Eur J Biochem 178:395–401

    Article  PubMed  CAS  Google Scholar 

  • Boettcher PJ, Caroli A, Stella A, Chessa S, Budelli E, Canavesi F, Ghiroldi S, Pagnacco G (2004) Effects of casein haplotypes on milk production traits in Italian Holstein and Brown Swiss cattle. J Dairy Sci 87:4311–4317

    Article  PubMed  CAS  Google Scholar 

  • Brotherstone S, White IMS, Meyer K (2000) Genetic modelling of daily milk yield using orthogonal polynomials and parametric curves. Anim Sci 70:407–415

    Google Scholar 

  • Chen HY, Zhang Q, Yin CC, Wang CK, Gong WJ, Mei G (2006) Detection of quantitative trait loci affecting milk production traits on bovine chromosome 6 in a Chinese Holstein population by the daughter design. J Dairy Sci 89:782–790

    Article  PubMed  CAS  Google Scholar 

  • de Koning DJ (2006) Conflicting candidates for cattle QTLs. Trends Genet 22:301–305

    Article  PubMed  Google Scholar 

  • Dunnett CW (1955) A multiple comparison procedure for comparing several treatments with a control. J Am Stat Assoc 50:1096–1121

    Article  Google Scholar 

  • Fernando RL, Grossman M (1989) Marker assisted selection using best linear unbiased prediction. Genet Sel Evol 21:467–477

    Article  Google Scholar 

  • Gilmour AR, Thompson R, Cullis BR (1995) Average information REML: an efficient algorithm for variance parameter estimation in linear mixed models. Biometrics 51:1440–1450

    Article  Google Scholar 

  • Gilmour AR, Gogel BJ, Cullis BR, Thompson R (2006) ASReml user guide, release 2. VSN International Ltd., Hemel Hempstead, HP1 1ES, UK. Available online at: http://www.vsni.co.uk/downloads/asreml/release2/doc/UserGuide.pdf

  • Groenen MA, Dijkhof RJ, Verstege AJ, van der Poel JJ (1993) The complete sequence of the gene encoding bovine alpha s2-casein. Gene 123:187–193

    Article  PubMed  CAS  Google Scholar 

  • Heath SC (1997) Markov chain Monte Carlo segregation and linkage analysis for oligogenic models. Am J Hum Genet 61:748–760

    Article  PubMed  CAS  Google Scholar 

  • Ikonen T, Bovenhuis H, Ojala M, Ruottinen O, Georges M (2001) Associations between casein haplotypes and first lactation milk production traits in Finnish Ayrshire cows. J Dairy Sci 84:507–514

    Article  PubMed  CAS  Google Scholar 

  • Jollès P, Loucheux-Lefebvre MH, Henschen A (1978) Structural relatedness of kappa-casein and fibrinogen gamma-chain. J Mol Evol 11:271–277

    Article  PubMed  Google Scholar 

  • Knott SA, Haley CS (1992) Maximum likelihood mapping of quantitative trait loci using full-sib families. Genetics 132:1211–1222

    PubMed  CAS  Google Scholar 

  • Lindstrom MJ, Bates DM (1988) Newton–Raphson and EM algorithms for linear mixed-effects models for repeated-measures data. J Am Stat Assoc 83:1014–1022

    Google Scholar 

  • Lund MS, Sorensen P, Madsen P, Jaffrézic F (2008) Detection and modelling of time-dependent QTL in animal populations. Genet Sel Evol 40:177–194

    Article  PubMed  Google Scholar 

  • Macgregor S, Knott SA, White I, Visscher PM (2005) Quantitative trait locus analysis of longitudinal quantitative trait data in complex pedigrees. Genetics 171:1365–1376

    Article  PubMed  CAS  Google Scholar 

  • Nadesalingam J, Plante Y, Gibson JP (2001) Detection of QTL for milk production on Chromosomes 1 and 6 of Holstein cattle. Mamm Genome 12:27–31

    Article  PubMed  CAS  Google Scholar 

  • Nilsen H, Olsen HG, Hayes B, Sehested E, Svendsen M, Nome T, Meuwissen T, Lien S (2009) Casein haplotypes and their association with milk production traits in Norwegian Red cattle. Genet Sel Evol 41:24

    Article  PubMed  Google Scholar 

  • Olsen HG, Lien S, Gautier M, Nilsen H, Roseth A, Berg PR, Sundsaasen KK, Svendsen M, Meuwissen THE (2005) Mapping of a milk production quantitative trait locus to a 420-kb region on bovine chromosome 6. Genetics 169:275–283

    Article  PubMed  CAS  Google Scholar 

  • Ptak E, Schaeffer LR (1993) Use of test day yields for genetic evaluation of dairy sires and cows. Livest Prod Sci 34:23–34

    Article  Google Scholar 

  • R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. Home page at: http://www.R-project.org

  • Raubertas RF, Shook GE (1982) Relationship between lactation measures of somatic cell concentration and milk yield. J Dairy Sci 65:419–425

    Article  Google Scholar 

  • Rodriguez-Zas SL, Southey BR, Heyen DW, Lewin HA (2002) Detection of quantitative trait loci influencing dairy traits using a model for longitudinal data. J Dairy Sci 85:2681–2691

    Article  PubMed  CAS  Google Scholar 

  • Schaeffer LR (2004) Application of random regression models in animal breeding. Livest Prod Sci 86:35–45

    Article  Google Scholar 

  • Schaeffer LR, Dekkers JCM (1994) Random regressions in animal models for test-day production in dairy cattle. In: Proceedings of the 5th World Congress on Genetics Applied to Livestock Production (WCGALP), Guelph, Canada, August 1994, vol 18, pp 443–446

  • Stram DO, Lee JW (1994) Variance components testing in the longitudinal mixed effects model. Biometrics 50:1171–1177

    Article  PubMed  CAS  Google Scholar 

  • Szyda J, Liu Z (1999) Modelling test day data from dairy cattle. J Appl Genet 40:103–116

    Google Scholar 

  • Varona L, Gómez-Raya L, Rauw WM, Ovilo C, Clop A, Noguera JL (2005) The value of prior information for detection of QTL affecting longitudinal traits: an example using Von Bertalanffy growth function. J Anim Breed Genet 122:37–48

    Article  PubMed  CAS  Google Scholar 

  • Velmala RJ, Vilkki HJ, Elo KT, De Koning DJ, Mäki-Tanila AV (1999) A search for quantitative trait loci for milk production traits on chromosome 6 in Finnish Ayrshire cattle. Anim Genet 30:136–143

    Article  PubMed  CAS  Google Scholar 

  • Weikard R, Kühn C, Goldammer T, Freyer G, Schwerin M (2005) The bovine PPARGC1A GENE: molecular characterization and association of an SNP with variation of milk fat synthesis. Physiol Genomics 21:1–13

    Article  PubMed  CAS  Google Scholar 

  • Wolfinger R, Tobias R, Sall J (1994) Computing Gaussian likelihoods and their derivatives for general linear mixed models. SIAM J Sci Comput 15:1294–1310

    Article  Google Scholar 

  • Yang R, Tian Q, Xu S (2006) Mapping quantitative trait loci for longitudinal traits in line crosses. Genetics 173:2339–2356

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Suchocki.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 470 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suchocki, T., Szyda, J. & Zhang, Q. Modelling QTL effect on BTA06 using random regression test day models. J Appl Genetics 54, 49–60 (2013). https://doi.org/10.1007/s13353-012-0114-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13353-012-0114-0

Keywords

Navigation