Skip to main content
Log in

Characteristics and mechanisms of the sudden warming events in the nocturnal atmospheric boundary layer: A case study using WRF

  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

Although sudden nocturnal warming events near the earth’s surface in Australia and the United States have been examined in previous studies, similar events observed occasionally over the Loess Plateau of Northwest China have not yet been investigated. The factors that lead to these warming events in such areas with their unique topography and climate remain not clear. To understand the formation mechanisms and associated thermal and dynamical features, a nocturnal warming event recorded in Gansu Province (northwest of the Loess Plateau) in June 2007 was investigated by using observations and model simulations with the Weather Research and Forecasting (WRF) model. Observations showed that this near-surface warming event lasted for 4 h and the temperature increased by 2.5°C. During this event, a decrease in humidity occurred simultaneously with the increase of temperature. The model simulation showed that the nocturnal warming was caused mainly by the transport of warmer and drier air aloft downward to the surface through enhanced vertical mixing. Wind shear played an important role in inducing the elevated vertical mixing, and it was enhanced by the continuous development of the atmospheric baroclinicity, which converted more potential energy to kinetic energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Acevedo, O. C., and D. R. Fitzjarrald, 2001: The early evening surface-layer transition: Temporal and spatial variability. J. Atmos. Sci., 58, 2650–2667.

    Article  Google Scholar 

  • An, Z. S., 2000: The history and variability of the East Asian paleomonsoon climate. Quaternary Sci. Rev., 19, 171–187.

    Article  Google Scholar 

  • Banta, R. M., Y. L. Pichugina, and R. K. Newsom, 2003: Relationship between low-level jet properties and turbulence kinetic energy in the nocturnal stable boundary layer. J. Atmos. Sci., 60, 2549–2555.

    Article  Google Scholar 

  • Banta, R. M., L. Mahrt, D. Vickers, et al., 2007: The very stable boundary layer on nights with weak lowlevel jets. J. Atmos. Sci., 64, 3068–3090.

    Article  Google Scholar 

  • Bougeault, P., and P. Lacarrere, 1989: Parameterization of orography-induced turbulence in a mesobeta–scale model. Mon. Wea. Rev., 117, 1872–1890.

    Article  Google Scholar 

  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569–585.

    Article  Google Scholar 

  • Clarke, R. H., R. K. Smith, and D. G. Reid, 1981: The morning glory of the gulf of Carpentaria: An atmospheric undular bore. Mon. Wea. Rev., 109, 1726–1750.

    Article  Google Scholar 

  • Corsmeier, U., N. Kalthoff, O. Kolle, et al., 1997: Ozone concentration jump in the stable nocturnal boundary layer during an LLJ-event. Atmos. Environ., 31, 1977–1989.

    Article  Google Scholar 

  • Derbyshire, S. H., 1999: Boundary-layer decoupling over cold surfaces as a physical boundary-instability. Bound.-Layer Meteor., 90, 297–325.

    Article  Google Scholar 

  • Doswell III, C. A., and M. J. Haugland, 2007: A comparison of two cold fronts-effects of the planetary boundary layer on the mesoscale. Electronic J. Severe Storms Meteor., 2, 1–12.

    Google Scholar 

  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077–3107.

    Article  Google Scholar 

  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1, 33–52.

    Article  Google Scholar 

  • Fang Shibo, Tan Yankai, and Ren Sanxue, 2010: Winter wheat yields decline with spring higher night temperature by controlled experiments. Scientia Agricultura Sinica, 43, 3251–3258, doi: 10.3864/j.issn.0578-1752.2010.15.025. (in Chinese)

    Google Scholar 

  • Farrugia, R. N., 2003: The wind shear exponent in a Mediterranean Island climate. Renew. Energy, 28, 647–653.

    Article  Google Scholar 

  • Fiebrich, C. A., and K. C. Crawford, 2001: The impact of unique meteorological phenomena detected by the Oklahoma Mesonet and ARS Micronet on automated quality control. Bull. Amer. Meteor. Soc., 82, 2173–2187.

    Article  Google Scholar 

  • Galperin, B., S. Sukoriansky, and P. S. Anderson, 2007: On the critical Richardson number in stably stratified turbulence. Atmos. Sci. Lett., 8, 65–69.

    Article  Google Scholar 

  • Grell, G. A., and S. R. Freitas, 2014: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys., 14, 5233–5250, doi: 10.5194/acp-14-5233-2014.

    Article  Google Scholar 

  • Ha, K. -J., and L. Mahrt, 2003: Radiative and turbulent fluxes in the nocturnal boundary layer. Tellus A, 55, 317–327.

    Article  Google Scholar 

  • Hacker, J. P., and W. M. Angevine, 2013: Ensemble data assimilation to characterize surface-layer errors in numerical weather prediction models. Mon. Wea. Rev., 141, 1804–1821.

    Article  Google Scholar 

  • Hong, S. Y., J. Dudhia, and S.H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103–120.

    Article  Google Scholar 

  • Hoskins, B. J., and P. J. Valdes, 1990: On the existence of storm-tracks. J. Atmos. Sci., 47, 1854–1864.

    Article  Google Scholar 

  • Hu, X. M., J. W. Nielsen-Gammon, and F. Zhang, 2010: Evaluation of three planetary boundary layer schemes in the WRF model. J. Appl. Meteor. Climatol., 49, 1831–1844.

    Article  Google Scholar 

  • Hu, X. M., D. C. Doughty, K. J. Sanchez, et al., 2012: Ozone variability in the atmospheric boundary layer in Maryland and its implications for vertical transport model. Atmos. Environ., 46, 354–364.

    Article  Google Scholar 

  • Hu, X. M., P. M. Klein, M. Xue, et al., 2013a: Enhanced vertical mixing associated with a nocturnal cold front passage and its impact on near-surface temperature and ozone concentration. J. Geophys. Res., 118, 2714–2728.

    Article  Google Scholar 

  • Hu, X. M., P. M. Klein, and M. Xue, 2013b: Evaluation of the updated YSU planetary boundary layer scheme within WRF for wind resource and air quality assessments. J. Geophys. Res., 118, 10490–10505, doi: 10.1002/jgrd.50823.

    Article  Google Scholar 

  • Huang Jianping, Zhang Wu, Zuo Jinqing, et al., 2008: An overview of the semi-arid climate and environment research observatory over the Loess Plateau. Adv. Atmos. Sci., 25, 906–921.

    Article  Google Scholar 

  • LeMone, M. A., M. Tewari, F. Chen, et al., 2013: Objectively determined fair-weather CBL depths in the ARW-WRF model and their comparison to CASES-97 observations. Mon. Wea. Rev., 141, 30–54, doi: 10.1175/MWR-D-12-00106.1.

    Article  Google Scholar 

  • Liang, J.N., L. Zhang, Y. Wang, et al., 2014: Turbulence regimes and the validity of similarity theory in the stable boundary layer over complex terrain of the Loess Plateau, China. J. Geophys. Res., 119, 6009–6021.

    Google Scholar 

  • Lindzen, R. S., and B. Farrell, 1980: A simple approximate result for the maximum growth rate of baroclinic instabilities. J. Atmos. Sci., 37, 1648–1654.

    Article  Google Scholar 

  • Mlawer, E. J., S. J. Taubman, P. D. Brown, et al., 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16663–16682.

    Article  Google Scholar 

  • Nallapareddy, A., A. Shapiro, and J. J. Gourley, 2011: A climatology of nocturnal warming events associated with cold-frontal passages in Oklahoma. J. Appl. Meteor. Climatol., 50, 2042–2061.

    Article  Google Scholar 

  • Nappo, C. J., 1991: Sporadic breakdowns of stability in the PBL over simple and complex terrain. Bound.-Layer Meteor., 54, 69–87.

    Article  Google Scholar 

  • Pan Xiaoduo, Li Xin, Ran Youhua, et al., 2012: Impact of underlying surface information on WRF modeling in Heihe River basin. Plateau Meteor., 31, 657–667. (in Chinese)

    Google Scholar 

  • Poulos, G. S., W. Blumen, D. C. Fritts, et al., 2002: CASES-99: A comprehensive investigation of the stable nocturnal boundary layer. Bull. Amer. Meteor. Soc., 83, 555–581.

    Article  Google Scholar 

  • Qian Minwei and Li Jun, 1996: Intermittent turbulence and temperature burst in the nocturnal surface layer. Chinese J. Atmos. Sci., 20, 250–254. (in Chinese)

    Google Scholar 

  • Reeder, M. J., R. K. Smith, R. Deslandes, et al., 1999: Subtropical fronts observed during the 1996 central Australian fronts experiment. Aust. Meteor. Mag., 49, 181–200.

    Google Scholar 

  • Reitebuch, O., A. Strassburger, S. Emeis, et al., 2000: Nocturnal secondary ozone concentration maxima analyzed by sodar observations and surface measurements. Atmos. Environ., 34, 4315–4329.

    Article  Google Scholar 

  • Salmond, J. A., and I. G. McKendry, 2002: Secondary ozone maxima in a very stable nocturnal boundary layer: Observations from the lower Fraser Valley, BC. Atmos. Environ., 36, 5771–5782.

    Article  Google Scholar 

  • Sanders, F., and E. Kessler, 1999: Frontal analysis in the light of abrupt temperature changes in a shallow valley. Mon. Wea. Rev., 127, 1125–1133.

    Article  Google Scholar 

  • Shin, H. H., and S. Y. Hong, 2011: Intercomparison of planetary boundary-layer parametrizations in the WRF model for a single day from CASES-99. Bound.-Layer Meteor., 139, 261–281, doi: 10.1007/s10546-010-9583-z.

    Article  Google Scholar 

  • Shu Shoujuan, Wang Yuan, and Bai Lina, 2013: Insight into the role of the lower-layer vertical wind shear in tropical cyclone intensification over the western North Pacific. Acta Meteor. Sinica, 27, 356–363.

    Article  Google Scholar 

  • Simmonds, I., and E. P. Lim, 2009: Biases in the calculation of Southern Hemisphere mean baroclinic eddy growth rate. Geophys. Res. Lett., 36, doi: 10.1029/2008GL036320.

  • Smith, R. K., M. J. Redder, N. J. Tapper, et al., 1995: Central Australian cold fronts. Mon. Wea. Rev., 123, 16–38.

    Article  Google Scholar 

  • Soler, M. R., C. Infante, P. Buenestado, et al., 2002: Observations of nocturnal drainage flow in a shallow gully. Bound.-Layer Meteor., 105, 253–273.

    Article  Google Scholar 

  • Steeneveld, G. J., B. J. H. Van De Wiel, and A. A. M. Holtslag, 2006: Modelling the Arctic stable boundary layer and its coupling to the surface. Bound. -Layer Meteor., 118, 357–378.

    Article  Google Scholar 

  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer, Netherlands, 666 pp.

    Book  Google Scholar 

  • Sun, J. L., L. Mahrt, R. M. Banta, et al., 2012: Turbulence regimes and turbulence intermittency in the stable boundary layer during CASES-99. J. Atmos. Sci., 69, 338–351.

    Article  Google Scholar 

  • Tao Jianjun, Wang Fang, Li Chaokui, et al., 2013: Influence of vertical shear of basic tangential wind on the development and maintenance of typhoon. Acta Meteor. Sinica, 27, 273–281.

    Article  Google Scholar 

  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. Cambridge University Press, UK, 745 pp.

    Book  Google Scholar 

  • Van De Wiel, B. J. H., R. J. Ronda, A. F. Moene, et al., 2002: Intermittent turbulence and oscillations in the stable boundary layer over land. Part I: A bulk model. J. Atmos. Sci., 59, 942–958.

    Article  Google Scholar 

  • Van De Wiel, B. J. H., A. F. Moene, O. K. Hartogensis, et al., 2003: Intermittent turbulence in the stable boundary layer over land. Part III: A classification for observations during CASES-99. J. Atmos. Sci., 60, 2509–2522.

    Article  Google Scholar 

  • Wang, G. Y., J. P. Huang, W. D. Guo, et al., 2010: Observation analysis of land-atmosphere interactions over the Loess Plateau of Northwest China. J. Geophys. Res., 115, doi: 10.1029/2009JD013372.

  • Weber, A. H., and R. J. Kurzeja, 1991: Nocturnal planetary boundary layer structure and turbulence episodes during the project STABLE field program. J. Appl. Meteor., 30, 1117–1133.

    Article  Google Scholar 

  • White, L. D., 2009: Sudden nocturnal warming events in Mississippi. J. Appl. Meteor. Climatol., 48, 758–775.

    Article  Google Scholar 

  • Xie, B., J. C. H. Fung, A. Chan, et al., 2012: Evaluation of nonlocal and local planetary boundary layer schemes in the WRF model. J. Geophys. Res., 117, D12103, doi: 10.1029/2011JD017080.

    Google Scholar 

  • Žabkar, R., D. Koracin, and J. Rakovec, 2013: A WRF/Chem sensitivity study using ensemble modelling for a high ozone episode in Slovenia and the northern Adriatic area. Atmos. Environ., 77, 990–1004, doi: 10.1016/j.atmosenv.2013.05.065.

    Article  Google Scholar 

  • Zhang Hongliang, Wang Yungang, Hu Jianlin, et al., 2015: Relationships between meteorological parameters and criteria air pollutants in three megacities in China. Environ. Res., 140, 242–254, doi: 10.1016/j.envres.2015.04.004.

    Article  Google Scholar 

  • Zhang Suotie, Ma Shuqing, Pang Yi, et al., 2014: An inquiry on forecast model of maximum and minimum temperature in large sunlight greenhouse in Northeast China. Chinese Agricultural Science Bulletin, 30, 249–253. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Yang  (杨 毅).

Additional information

Supported by the National Natural Science Foundation of China (41375109), National (Key) Basic Research and Development (973) Program of China (2014CB441406), and Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science & Technology (KLME1412).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Yang, Y., Hu, XM. et al. Characteristics and mechanisms of the sudden warming events in the nocturnal atmospheric boundary layer: A case study using WRF. J Meteorol Res 29, 747–763 (2015). https://doi.org/10.1007/s13351-015-4101-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-015-4101-3

Key words

Navigation