Skip to main content

Advertisement

Log in

Piezoelectric active sensing system for crack detection in concrete structure

  • Original Paper
  • Published:
Journal of Civil Structural Health Monitoring Aims and scope Submit manuscript

Abstract

This paper presents an active piezoelectric sensing system for concrete crack detection that is based on the energy diffusivity method. The feasibility of using the energy diffusivity of ultrasound to characterize the structural integrity of a pavement is first analyzed. Experiments are then carried out to evaluate the performance of this approach to crack detection. In addition, the detectable range of this system is studied by testing it with cuttings at different angles and different distances between sensor and actuator. Results show that by analyzing the energy diffusivity density of the sensor responses, cracks in the concrete specimen can be detected. This crack detection system can be used in highway and airport pavement slabs for pavement health monitoring applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Fujita Y, Mitani Y, Hamamoto Y (2006) A method for crack detection on a concrete structure. In: The 18th international conference on pattern recognition

  2. Fujita Y, Hamamoto Y (2011) A robust automatic crack detection method from noisy concrete surface. Mach Vis Appl 22:245–254

    Article  Google Scholar 

  3. Ito A, Aoki Y, Hashimoto S (2002) Accurate extraction and measurement of fine cracks from concrete block surface image. Ind Electron Soc 3:2202–2207

    Google Scholar 

  4. Abdel-Qader I, Abudayyeh O, Kelly ME (2003) Analysis of edge-detection techniques for crack identification in bridges. J Comput Civil Eng 7(4):255–263

    Article  Google Scholar 

  5. Seung-Nam Yu, Jang J-H, Han C-S (2006) Auto inspection system using a mobile robot for detecting concrete cracks in a tunnel. Auto Constr 16(2007):255–261

    Google Scholar 

  6. Yamaguchi T, Hashimoto S (2006) Automated crack detection for concrete surface image using percolation model and edge information. In: IEEE industrial electronics, IECON 2006, 32nd annual conference on, 3355–3360

  7. Sinha SK, Fieguth PW (2006) Automated detection of cracks in buried concrete pipe images. Auto Constr 15(2006):58–72

    Article  Google Scholar 

  8. Song G, Haihang G, Mo Y-L (2008) Smart aggregates: multi-functional sensor for concrete structures-a tutorial and a review. Smart Mater Struct 17(2008):1–17

    Google Scholar 

  9. Gu H, Moslehy Y, Sanders D, Song G, Mo YL (2010) Multi-functional smart aggregate-based structural health monitoring of circular reinforced concrete columns subjected to seismic excitations. Smart Mater Struct 19:065026 (, p 7)

    Article  Google Scholar 

  10. Quinn W, Kelly G, Barrett J (2012) Development of an embedded wireless sensing system for the monitoring of concrete. Struct Health Monit 11:381–392

    Article  Google Scholar 

  11. Zhang Y (2006) In situ fatigue crack detection using piezoelectric paint sensor. J Intell Mater Syst Struct 2006(17):843

    Article  Google Scholar 

  12. Chong KP, Carino NJ, Washer G (2003) Health monitoring of civil infrastructures. Smart Mater Struct 12(2003):483–493

    Article  Google Scholar 

  13. Shin SW et al (2008) Piezoelectric sensor based nondestructive active monitoring of strength gain in concrete. Smart Mater Struct 17:1–8

    Article  Google Scholar 

  14. Wait JR, Park G, Farrar CR (2005) Integrated structural health assessment using piezoelectric active sensors. Shock Vib 12(6):389–405

    Article  Google Scholar 

  15. Park S, Ahmad S, Yun C-B, Roh Y (2006) Multiple crack detection of concrete structures using impedance-based structural health monitoring techniques. Exp Mech 46:609–618

    Article  Google Scholar 

  16. Zhu J, He L (2011) Piezoelectric actuator/sensor wave propagation based nondestructive active monitoring method of concrete structures. J Wuhan Univ Technol Mater 26(3):541–547

    Article  Google Scholar 

  17. Zhu J, Gao C, He L (2012) Piezoelectric-based crack detection techniques of concrete structures: experimental study. J Wuhan Univ Technol Mater 27(2):346–352

    Article  Google Scholar 

  18. Anugonda P, Wiehn JS, Turner JA (2001) Diffusion of ultrasound in concrete. Ultrasonic J A 39(6):429–435

    Article  Google Scholar 

  19. Deroo F, Kim J-Y, Qu J, Sabra K, Jacobs LJ (2010) Detection of damage in concrete using diffuse ultrasound. J Acoust Soc Am 127(6):3315–3318

    Article  Google Scholar 

  20. Anugonda P, Wiehn JS, Turner JA (2001) Diffusion of ultrasound in concrete. Ultrasonics 39(2001):429–435

    Article  Google Scholar 

  21. Turner J (1998) Diffusion of ultrasound in concrete. J Acoust Soc Am 104(3):1790

    Article  Google Scholar 

  22. Ramamoorthy SK, Kane Y, Turner JA (2004) Ultrasound diffusion for crack depth determination in concrete. J Acoust Soc Am 115(2):523–529

    Article  Google Scholar 

  23. Weaver RL (1990) Diffusivity of ultrasound in polycrystals. J Mech Phys Solids 38(1):55–86

    Article  MathSciNet  MATH  Google Scholar 

  24. Weaver RL (1998) Ultrasonics in an aluminum foam. Ultrasonics 36(1–5):435–442

    Article  Google Scholar 

  25. Kee S-H, Zhu J (2013) Using piezoelectric sensors for ultrasonic pulse velocity measurements in concrete. Smart Mater Struct 22:115016 (, p 11)

    Article  Google Scholar 

  26. Demirboga R, Turkmen I, Karakoc MB (2004) Relationship between ultrasonic velocity and compressive strength for high-volume mineral-admixtured concrete. Cem Concr Res 34(2004):2329–2336

    Article  Google Scholar 

  27. Ye G, Lura P, van Breugel K, Fraaij ALA (2004) Study on the development of the microstructure in cement-based materials by means of numerical simulation and ultrasonic pulse velocity measurement. Cement Concr Compos 26:491–497

    Article  Google Scholar 

  28. Schubert F, Koehler B (2004) Numerical time-domain simulation of diffusive ultrasound in concrete. Ultrasonics 42(1):781–786

    Article  Google Scholar 

  29. Casten RG, Holland CJ (1978) Instability results for reaction diffusion equations with Neumann boundary conditions. J Differ Equ 27(2):266–273

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the US Federal Aviation Administration Airport Pavement R&D Section (Grant#: 2013G022) for funding support. The contents of the paper do not necessarily reflect the official views or policies of the FAA. The paper does not constitute a standard, specification, or regulation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xun Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Yu, X., Alexander, L. et al. Piezoelectric active sensing system for crack detection in concrete structure. J Civil Struct Health Monit 6, 129–139 (2016). https://doi.org/10.1007/s13349-015-0143-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13349-015-0143-6

Keywords

Navigation