Skip to main content
Log in

Minimal generating sets of lattice ideals

  • Published:
Collectanea Mathematica Aims and scope Submit manuscript

Abstract

Let \(L\subset \mathbb {Z}^n\) be a lattice and \(I_L=\langle x^{\mathbf {u}}-x^{\mathbf {v}}:\ {\mathbf {u}}-{\mathbf {v}}\in L\rangle \) be the corresponding lattice ideal in \(\Bbbk [x_1,\ldots , x_n]\), where \(\Bbbk \) is a field. In this paper we describe minimal binomial generating sets of \(I_L\) and their invariants. We use as a main tool a graph construction on equivalence classes of fibers of \(I_L\). As one application of the theory developed we characterize binomial complete intersection lattice ideals, a longstanding open problem in the case of non-positive lattices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The notion of Markov basis was introduced in [10] to denote a generating binomial set of \(I_L\), see [10, Theorem 3.1]. Occasionally in the literature, especially in algebraic statistics, the minimal generating sets are also referred to as minimal Markov bases.

  2. Even though for positive lattices the notions of minimal generating sets and cardinality-minimal generating sets coincide, this is not true for non-positive lattices.

  3. The union of all minimal generating sets of \(I_L\) is called the universal Markov basis of \(I_L\), following [19, Definition 3.1].

  4. Let \(p_1,\ldots , p_s\) be s distinct primes and let \(a_i=(p_1\cdots p_s)/p_i\). Then \(\langle 1-(xy)^{a_1}, \ldots , 1-(xy)^{a_s}\rangle =\langle 1-xy\rangle \) and \( \{ 1-x^5, 1-(xy)^{a_1},\ldots , 1-(xy)^{a_s}\}\) is a minimal generating set of \(I_L\) of cardinality \(s+1\).

  5. There are cardinality-minimal generating sets that are not contained in the Graver basis of \(I_L\), as is the case for \(\{1-x^{2012}y^{2017}, y^4-x^{2013}y^{2022}\} \). The union of the cardinality-minimal generating sets of \(I_L\) is an infinite set.

  6. This is proved in detail in the last section.

References

  1. Aoki, S., Takemura, A., Yoshida, R.: Indispensable monomials of toric ideals and Markov bases. J. Symb. Comput. 43, 490–507 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bigatti, A., LaScala, R., Robbiano, L.: Computing toric ideals. J. Symb. Comput. 27, 351–365 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Briales, E., Campillo, A., Marijuán, C., Pisón, P.: Minimal systems of generators for ideals of semigroups. J. Pure Appl. Algebra 124, 7–30 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Charalambous, H., Katsabekis, A., Thoma, A.: Minimal systems of binomial generators and the indispensable complex of a toric ideal. Proc. Am. Math. Soc. 135, 3443–3451 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Charalambous, H., Thoma, A., Vladoiu, M.: Markov bases and generalized Lawrence liftings. Ann. Comb. 19, 661–669 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Charalambous, H., Thoma, A., Vladoiu, M.: Markov complexity of monomial curves. J. Algebra 417, 391–411 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Charalambous, H., Thoma, A., Vladoiu, M.: Binomial fibers and indispensable binomials. J. Symb. Comput. 74, 578–591 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. CoCoATeam: CoCoA: a system for doing computations in commutative algebra. http://cocoa.dima.unige.it

  9. Delorme, Ch.: Sous monoides d’intersection complete de \(N\). Ann. Sci. Éc. Norm. Super. 9, 145–154 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  10. Diaconis, P., Sturmfels, B.: Algebraic algorithms for sampling from conditional distributions. Ann. Stat. 26, 363–397 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dickenstein, A., Matusevich, L.F., Miller, E.: Combinatorics of binomial primary decomposition. Math. Z. 264, 745–763 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Drton, M., Sturmfels, B., Sullivant, S.: Lectures on algebraic statistics, Oberwolfach Seminars, vol. 39. Birkhäuser Verlag, Basel (2009)

  13. Eisenbud, D., Sturmfels, B.: Binomial ideals. Duke Math. J. 84, 1–45 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fischer, K., Morris, W., Shapiro, J.: Affine semigroup rings that are complete intersections. Proc. Am. Math. Soc. 125, 3137–3145 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gitler, I., Reyes, E., Vega, J.A.: Complete intersection toric ideals of oriented graphs and Chorded-Theta subgraphs. J. Algebr. Comb. 38, 721–744 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Herzog, J.: Generators and relations of abelian semigroups and semigroup rings. Manuscr. Math. 3, 175–193 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hemmecke, R., Malkin, P.: Computing generating sets of lattice ideals and Markov bases of lattices. J. Symb. Comput. 44, 1463–1476 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hoşten, S., Sturmfels, B.: GRIN: an implementation of Gröbner bases for integer programming. In: Balas, E., Clausen, J. (eds.) Integer programming and combinatorial optimization (Copenhagen, 1995). Lecture Notes in Computer Science, vol. 920, pp. 267–276. Springer, Berlin (1995)

  19. Hoşten, S., Sullivant, S.: A finiteness theorem for Markov bases of hierarchical models. J. Comb. Theory Ser. A 114, 311–321 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ishida, M.N.: Normal semigroup rings which are complete intersections. In: Proceedings of Symposium on Commtative Algebra, Karuizawa (1978)

  21. Kähle, T., Miller, E.: Decompositions of commutative monoid congruences and binomial ideals. Algebra Number Theory 8, 1297–1364 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. López, H., Villarreal, R.: Complete intersections in binomial and lattice ideals. Int. J. Algebra Comput. 23, 1419–1429 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Miller, E.: Theory and Applications of lattice point methods for binomial ideals. In: Combinatorial Aspects of Commutative Algebra and Algebraic Geometry, Proceedings of Abel Symposium held at Voss, Norway, 14 June 2009, Abel Symposia, vol. 6, pp. 99–154. Springer, Berlin (2011)

  24. Miller, E., Sturmfels, B.: Combinatorial commutative algebra. Graduate Texts in Mathematics, vol. 227, xiv+417 pp. Springer, New York (2005)

  25. Morales, M., Thoma, A.: Complete intersection lattice ideals. J. Algebra 284, 755–770 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nakajima, H.: Affine torus embeddings which are complete intersections. Tôhoku Math. J. 38, 85–98 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  27. O’Carroll, L., Planas-Vilanova, F., Villarreal, R.: Degree and algebraic properties of lattice and matrix ideals. SIAM J. Discrete Math. 28(1), 394–427 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ohsugi, H., Hibi, T.: Indispensable binomials of finite graphs. J. Algebra Appl. 4, 421–434 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ohsugi, H., Hibi, T.: Toric ideals arising from contingency tables. In: Proceedings of the Ramanujan Mathematical Society’s Lecture Notes Series, pp. 87–111 (2006)

  30. Ojeda, I., Vigneron-Tenorio, A.: Indispensable binomials in semigroup ideals. Proc. Am. Math. Soc. 138, 4205–4216 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Peeva, I., Sturmfels, B.: Generic lattice ideals. J. Am. Math. Soc. 11, 363–373 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  32. Rosales, J.C., Garcia-Sanchez, P.A.: On complete intersection affine semigroups. Commun. Algebra 23, 5395–5412 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  33. Santos, F., Sturmfels, B.: Higher Lawrence configurations. J. Comb. Theory Ser. A 103, 151–164 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Schäfer, U.: Der kanonische modul monomialer raumkurven. Diplomarbeit, Martin-Luther-Universität Halle/Wittenberg, Halle (1985)

    Google Scholar 

  35. Scheja, G., Scheja, O., Storch, U.: On regular sequences of binomials. Manuscr. Math. 98, 115–132 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  36. Stanley, R.P.: Relative invariants of finite groups generated by pseudoreflections. J. Algebra 49, 134–148 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  37. Sturmfels, B.: Gröbner Bases and Convex Polytopes. University Lecture Series, No. 8 American Mathematical Society Providence, R.I. (1995)

  38. Sturmfels, B., Weismantel, R., Ziegler, G.: Gröbner bases of lattices, corner polyhedra, and integer programming. Beitr. Algebra Geom. Contrib. Algebra Geom. 36, 281–298 (1995)

    MATH  Google Scholar 

  39. Watanabe, K.: Invariant subrings which are complete intersections, I ( Invariant subrings of finite abelian groups). Nagoya Math. 77, 89–98 (1980)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ezra Miller for useful discussions on binomial fibers, back in 2009, that initiated this work. Also, we thank the anonymous referee for several helpful suggestions on the terminology of this paper and for simplifying the proofs of Propositions 2.11, 5.2 and Theorems 2.12, 2.13. This paper was partially written during the visit of the second and third author at the University of Ioannina. The third author was supported by a Romanian Grant awarded by UEFISCDI, Project Number 83 / 2010, PNII-RU code TE\(\_46/2010\), program Human Resources, “Algebraic modeling of some combinatorial objects and computational applications”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marius Vladoiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charalambous, H., Thoma, A. & Vladoiu, M. Minimal generating sets of lattice ideals. Collect. Math. 68, 377–400 (2017). https://doi.org/10.1007/s13348-017-0191-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13348-017-0191-9

Keywords

Mathematics Subject Classification

Navigation