Skip to main content
Log in

Godement resolution and operad sheaf homotopy theory

  • Published:
Collectanea Mathematica Aims and scope Submit manuscript

Abstract

We show how to induce products in sheaf cohomology for a wide variety of coefficients: sheaves of dg commutative and Lie algebras, symmetric \(\Omega \)-spectra, filtered dg algebras, operads and operad algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. So, in particular, example (2.1.6) proves that the Thom–Whitney simple functor of [5, 25] is a realization of a homotopy limit too.

References

  1. Godement, R.: Topologie algébrique et théorie des faisceaux. Actualités sci. et ind., vol. 1252. Hermann (1973)

  2. Gamst, J., Hoechsmann, K.: Products in sheaf cohomology. Tohoku Math. J. 22, 143–162 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  3. Jardine, J.F.: Cup products in sheaf cohomology. Can. Math. Bull. 29, 469–477 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  4. Swan, R.G.: Cup products in sheaf cohomology, pure injectives, and a substitute for projective resolutions. J. Pure Appl. Algebra 144, 169–211 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Navarro Aznar, V.: Sur la théorie de Hodge–Deligne. Inv. Math. 90, 11–76 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  6. Van den Bergh, M.: On global deformation quantization in the algebraic case. J. Algebra 315, 326–395 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hinich, V.: Deformations of sheaves of algebras. Adv. Math. 195, 102–164 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kapranov, M., Manin, Y.: Modules and Morita theorem for operads. Am. J. Math. 123, 811–838 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jardine, J.F.: Presheaves of symmetric spectra. J. Pure Appl. Algebra 150, 137–154 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Rodríguez González, B., Roig, A.: Godement resolutions and sheaf homotopy theory. Collect. Math 66(3), 423–452 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Levine, M.: Mixed Motives, Math. Surveys and Monographs, vol. 57. Amer. Math. Soc, Providence (1998)

  12. Ulmer, F.: On the existence and exactness of the associated sheaf functor. J. Pure Appl. Algebra 3, 295–306 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hovey, M., Shipley, B., Smith, J.: Symmetric spectra. J. Am. Math. Soc. 13(1), 149–208 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Guillén Santos, F., Navarro, V., Pascual, P., Roig, A.: A Cartan-Eilenberg approach to homotopical algebra. J. Pure Appl. Algebra 214, 140–164 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Pascual, P.: Some remarks on Cartan–Eilenberg categories. Collect. Math. 63, 203–216 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Rodríguez González, B.: Simplicial descent categories. J. Pure Appl. Algebra 216(4), 775–788 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cirici, J.: Cofibrant models of diagrams: mixed Hodge structures in rational homotopy. Trans. Am. Math. Soc. 367, 5935–5970 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cirici, J., Guillén, F.: Weight filtration on the cohomology of complex analytic spaces. J. Singul. 8, 83–99 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Cirici, J., Guillén, F.: \(E_1\)-formality of complex algebraic varieties. Algebraic Geom. Topol. 14, 3049–3079 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cirici, J., Guillén, F.: Homotopy theory of mixed hodge complexes. Tohoku J. Math. (2016) (to appear)

  21. Guillén, F., Navarro Aznar, V.: Un critère d’extension des foncteurs définis sur les schémas lisses. Publ. Math. IHES 95, 1–91 (2002)

    Article  MATH  Google Scholar 

  22. Mitchell, S.A.: Hypercohomology spectra and Thomason’s descent theorem. In: Algebraic K-Theory, Fields Institute Communications, pp. 221–278 (1997)

  23. Thomason, R.W.: Algebraic K-theory and etale cohomology. Ann. Sci. ENS 18, 437–552 (1985)

    MATH  Google Scholar 

  24. González, B.R.: Realizable homotopy colimits. Theory Appl. Categ. 29(22), 609–634 (2014)

    MathSciNet  MATH  Google Scholar 

  25. Hinich, V.A., Schechtman, V.V.: On homotopy limit of homotopy algebras. In: K-Theory, Arithmetic and Geometry, vol. 1289, pp. 240–264. Springer LNM (1987)

  26. Morel, F., Voevodsky, V.: \({\mathbb{A}}^1\)-homotopy theory of schemes. Pub. Math. IHES 90, 45–143 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. Bousfield, A.K., Kan, D.M.: Homotopy limits, completions and localizations. Lecture Notes in Mathematics, vol. 304. Springer, Heidelberg (1972)

  28. Hirschhorn, P.S.: Model Categories and Their Localizations. Mathematical Surveys and Monographs, vol. 99. American Mathematical Society, Providence (2002)

  29. Dold, A., Puppe, D.: Homologie Nicht-Additiver Funktoren. Anwendungen. Ann. Inst. Fourier 11, 201–312 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  30. Markl, M., Shnider, S., Stasheff, J.: Operads in Algebra, Topology and Physics. Mathematical Surveys and Monographs, vol. 96. American Mathematical Society, Providence (2002)

  31. Grothendieck, A. et al.: Algébrique SGA1 Revêtements étales et groupe fondamental, vol. 224. Springer LNM (1971)

  32. Fresse, B.: Modules over Operads and Functors. Lecture Notes in Mathematics, vol. 1967. Springer, Berlin (2009)

  33. Yekutieli, A.: Deformation quantization in algebraic geometry. Adv. Math. 198, 383–432 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hartshorne, R.: Algebraic Geometry, GTM, vol. 52. Springer, New York (1977)

  35. Schwede, S.: On the homotopy groups of symmetric spectra. Geom. Topol. 12(3), 1313–1344 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This paper develops an idea suggested to us by Vicente Navarro. We owe him a debt of gratitude for sharing it with us. The second-named author also benefited from many fruitful conversations with Pere Pascual. We are indebted to Francisco Guillén, Fernando Muro, Luis Narváez and Abdó Roig for their comments. We also thank the anonymous referee for suggesting a reorganization of the paper which, we believe, improves its clarity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agustí Roig.

Additional information

B. R. González partially supported by ERC Starting Grant project TGASS and by contracts SGR-119 and FQM-218. A. Roig partially supported by projects MTM2012-38122-C03-01/FEDER and 2014 SGR 634.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez González, B., Roig, A. Godement resolution and operad sheaf homotopy theory. Collect. Math. 68, 301–321 (2017). https://doi.org/10.1007/s13348-016-0171-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13348-016-0171-5

Keywords

Navigation