Skip to main content
Log in

The \(\mathrm {al}\) function of a cyclic trigonal curve of genus three

  • Published:
Collectanea Mathematica Aims and scope Submit manuscript

Abstract

A cyclic trigonal curve of genus three is a \(\mathbb {Z}_3\) Galois cover of \(\mathbb {P}^1\), therefore can be written as a smooth plane curve with equation \(y^3 = f(x) =(x - b_1) (x - b_2) (x - b_3) (x - b_4)\). Following Weierstrass for the hyperelliptic case, we define an “\(\mathrm {al}\)” function for this curve and \(\mathrm {al}^{(c)}_r\), \(c=0,1,2\), for each one of three particular covers of the Jacobian of the curve, and \(r=1,2,3,4\) for a finite branchpoint \((b_r,0)\). This generalization of the Jacobi \(\mathrm {sn}\), \(\mathrm {cn}\), \(\mathrm {dn}\) functions satisfies the relation:

$$\begin{aligned} \sum _{r=1}^4 \frac{\prod _{c=0}^2\mathrm {al}_r^{(c)}(u)}{f'(b_r)} = 1 \end{aligned}$$

which generalizes \(\mathrm {sn}^2u + \mathrm {cn}^2u = 1\). We also show that this can be viewed as a special case of the Frobenius theta identity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. We thank the Referee for recommending the additional reference [33, 34] on the classical “root functions”, and pointing out their multi-index analogs in [3, Chapter XI, §211], also quotients of theta functions with half-integer characteristics, as well as the work [35], where these “multi-index root functions”, already appeared in the solution of the Neumann system (cf. [30], e.g, for a definition), are applied to the Clebsch integrable case of the Kirkhoff equations.

  2. The ambiguity due to path of integration does not affect the formulas and is ignored throughout.

  3. The letters \(\mathrm {al}\) and \(\mathrm {Al}\) were used by Weierstrass in honor of Abel.

  4. More precisely, we consider an extended ring \(R':=R[z]/(z^3-x+b_a)\) but since \(\mathrm {Spec}(R')\) is a singular curve, we normalize it to \(\hat{R}={\mathbb C}[w,z]/(w^3-\prod (z^3-a_i))\). \(\hat{X}\) is the projectivization of \(\mathrm {Spec}(\hat{R})\). As in (10.2), we extend the \({\mathbb Z}_3\)-action consistently with the Galois action on \(R\).

  5. For a curve of genus 7 \(X_7\) whose affine part is given by: \(w^3 = \prod _{i=0}^8(z-\hat{c}_i)\), letting

    $$\begin{aligned} z' := \frac{1}{z - c_0}, \quad w':=\frac{1}{\root 3 \of {\prod _{i=1}^8(c_i - c_0)}} \frac{w}{(z-c_0)^3},\quad c_i' := \frac{1}{c_i - c_0}; \quad \end{aligned}$$

    as another affine chart, cf. [25, Ch. IIIa] and [16, Appendix], we have \( {w'}^3 = \prod _{i=1}^8(z'-c'_i)\). The holomorphic one-forms are given by

    $$\begin{aligned}&\hat{{\nu ^{I}}'}_1 = \frac{dz'}{3 {w'}^2} , \quad \hat{{\nu ^{I}}'}_2 = \frac{z' dz'}{3 {w'}^2}, \quad \hat{{\nu ^{I}}'}_3 = \frac{{z'}^2 dz'}{3 {w'}^2}, \quad \hat{{\nu ^{I}}'}_4 = \frac{dz'}{3 w}, \\&\hat{{\nu ^{I}}'}_5 = \frac{{z'}^3 dz'}{3 {w'}^2}, \quad \hat{{\nu ^{I}}'}_6 = \frac{z'w' dz'}{3 {w'}^2}, \quad \hat{{\nu ^{I}}'}_7 = \frac{{z'}^4 dz'}{3 {w'}^2}. \quad \end{aligned}$$

    We state that when \(c_0 =0\), \(\hat{{\nu ^{I}}}_i =-3 \hat{{\nu ^{I}}'}_{8-i}\) denoting \(d z' = - dz / z^2\).

References

  1. Arbarello, E., Cornalba, M., Griffiths, P.A., Harris, J.: Geometry of Algebraic Curves, Vol. I. Springer, Berlin (1984)

  2. Adams, M.R., Harnad, J., Previato, E.: Isospectral Hamiltonian flows in finite and infinite dimensions. I. Generalized Moser systems and moment maps into loop algebras. Commun. Math. Phys. 117, 451–500 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  3. Baker, H.F.: Abelian functions. Abel’s theorem and the allied theory of theta functions Reprint of the: original. Cambridge University Press, Cambridge, With a foreword by Igor Krichever. Cambridge Mathematical Library (1897). 1995

  4. Baker, H.F.: On the hyperelliptic sigma functions. Am. J. Math. XX(1898), 301–384

  5. Baker, H.F.: On a system of differential equations leading to periodic functions. Acta Math. 27, 135–156 (1903)

    Article  MATH  MathSciNet  Google Scholar 

  6. Buchstaber, V.M., Enolskii, V.Z., Leykin, D.V.: Kleinian Functions, Hyperelliptic Jacobians and Applications Reviews in Mathematics and Mathematical Physics (London) Novikov, S. P. and Krichever, I. M. Gordon and Breach, India, pp. 1–125 (1997)

  7. Buchstaber, V.M., Enolskii, V.Z., Leykin, D.V.: Uniformization of Jacobi varieties of trigonal curves and nonlinear differential equation. Funct. Anal. Appl. 34, 159–171 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cornalba, M.: On the locus of curves with automorphisms. Ann. Mat. Pura Appl. 149, 135–151 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  9. Eilbeck, J.C., Enolskii, V.Z., Leykin, D.V.: On the Kleinian construction of Abelian functions of canonical algebraic curves. In: Proceedings of the conference SIDE III: symmetries of Integrable differences equations, Saubadia, May 1998, CRM proceedings and lecture notes 2000, pp. 121–138

  10. Eilbeck, J.C., Enolskii, V.Z., Matsutani, S., Ônishi, Y., Previato, E.: Addition formulae over the Jacobian pre-image of hyperelliptic Wirtinger varieties. J. Reine Angew. Math. 619, 37–48 (2008)

    MATH  MathSciNet  Google Scholar 

  11. Eilbeck, J.C., Enolskii, V.Z., Matsutani, S., Ônishi, Y., Previato, E.: Abelian Functions for Trigonal Curves of Genus Three Int. Math. Research Notices 2008 Art. ID rnm 140, 38 pp

  12. Eilbeck, J.C., Enolskii, V.Z., Previato, E.: Spectral Curves of Operators with Elliptic Coefficients SIGMA 3(045), 17 (2007)

  13. Fay, J.D.: Theta functions on Riemann Surfaces. Springer, Berlin (1973)

  14. Gibbons, J., Matsutani, S., Ônishi, Y.: Relationship between the prime form and the sigma function for some cyclic \((r, s)\) curves. J. Phys. A 46(17), 175203, 21 pp (2013)

  15. Klein, F.: Ueber hyperelliptische sigmafunctionen. Math. Ann. 27, 431–464 (1886)

    Article  MathSciNet  Google Scholar 

  16. Komeda, J., Matsutani, S., Previato, E.: The sigma function for Weierstrass semigroups \(\langle 3,7,8\rangle \) and \(\langle 6,13,14,15,16\rangle \). Int. J. Math. 24(1350085), 58 (2013)

  17. Lindqvist, P., Peetre, J.: Two remarkable identities, called twos, for inverses to some Abelian integrals. Am. Math. Month. 108, 403–410 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  18. Matsutani, S.: Hyperelliptic solutions of KdV and KP equations: reevaluation of Baker’s study on hyperelliptic sigma functions. J. Phys. A: Math. Gen. 34, 4721–4732 (2001)

  19. Matsutani, S.: Hyperelliptic solutions of modified Korteweg-de Vries equation of genus g: essentials of Miura transformation. J. Phys. A: Math. Gen. 35, 4321–4333 (2002)

  20. Matsutani, S.: On a relation of Weierstrass al-functions. Int. J. Appl. Math. 11, 295–307 (2002)

    MATH  MathSciNet  Google Scholar 

  21. Matsutani, S.: Hyperelliptic al function solutions of sine-Gordon equation in new developments in mathematical physics research 2004 Nova Science edited by V. Benton, pp. 177–200

  22. Matsutani, S.: Neumann system and hyperelliptic al functions. Surv. Math. Appl. 3, 13–25 (2008)

    MATH  MathSciNet  Google Scholar 

  23. Matsutani, S., Previato, E.: Jacobi inversion on strata of the Jacobian of the \(C_{rs}\) curve \(y^r = f(x)\). J. Math. Soc. Jpn. 60, 1009–1044 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Matsutani, S., Previato, E.: Jacobi inversion on strata of the Jacobian of the \(C_{rs}\) curve \(y^r = f(x)\) II. J. Math. Soc. Jpn. 66, 647–692 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  25. Mumford, D.: Tata Lectures on Theta, Vol.s I, II. Birkhäuser, Boston (1981, 1984)

  26. Ônishi, Y.: Determinant expressions in Abelian functions for purely trigonal curves of degree four. Int. J. Math. 20, 427–441 (2009)

    Article  MATH  Google Scholar 

  27. Ônishi, Y.: Determinant formulae in Abelian functions for a general trigonal curve of degree five. Comput. Methods Funct. Theory 11, 547–574 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  28. Ônishi, Y.: Frobenius–Stickelberger-type formulae for general curves slides of presentation at the workshop .“The higher-genus sigma function and applications”, ICMS 11–15 Oct 2010. http://www2.meijo-u.ac.jp/~yonishi

  29. Previato, E.: Generalized Weierstrass \(\mathfrak{p}\)-functions and KP flows in affine space Comment. Math. Helvetici 62, 292–310 (1987)

  30. Schilling, R.J.: Generalizations of the Neumann system: a curve-theoretical approach-Part I, II, III order \(n\) systems Commun. Pure Appl. Math XL, 455–522, XLII, 409–442 (1989). XLV 1992, 775–820 (1987)

  31. Weierstrass, K.: Zur Theorie der Abel’schen Functionen. J. Reine Angew. Math. 47, 289–306 (1854)

    Article  MATH  MathSciNet  Google Scholar 

  32. Wellstein, J.: Zur Theorie der Functionenclasse \(s^3 = (z-\alpha _1)(z-\alpha _2)\cdots (z-\alpha _6)\). Math. Ann. 52, 440–448 (1898)

    Article  MathSciNet  Google Scholar 

Additional Items (provided by Referee)

  1. Königsberger, L.: Ueber die Transformation der Abelschen Functionen erster Ordnung. J. Reine Angew. Math. 64, 17–42 (1865)

    Article  MathSciNet  Google Scholar 

  2. Krazer, A.: Lehrbuch der Thetafunctionen. Leipzig, Teubner, 1903. Chelsea Publ. Comp, New York (1970)

  3. Weber, H.: Anwendung der Thetafunctionen zweir Veranderlicher auf die Theorie der Bewegung eines festen Körpers in einer Flüssigkeit. Math. Ann. 14, 173–206 (1878)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma Previato.

Appendix: Hyperelliptic \(\mathrm {al}\) Functions

Appendix: Hyperelliptic \(\mathrm {al}\) Functions

In this appendix, we review the hyperelliptic \(\mathrm {al}\)-function mainly following [3, 4].

Hyperelliptic Curve: We let a (hyper)elliptic curve \(C_g\) of genus \(g\) \((g>0)\) be defined by the affine equation,

$$\begin{aligned} y^2&= (x-b_0)(x-b_1)(x-b_2)\cdots (x-b_{2g})\nonumber \\&= P(x) Q(x), \end{aligned}$$
(11.1)

where \(b_j\)’s are distinct complex numbers, \(P(x) = (x-b_1)(x-b_3) \cdots (x-b_{2g-1})\) and \(Q(x) := y^2 / P(x)\). Let \((b_j,0) = B_j \in C_g\).

For a point \((x, y)\in C_g\), differentials of the first kind (not normalized in the standard way which gives the identity as the matrix of \(A\)-periods) are defined by,

$$\begin{aligned} {\nu ^{I}}_i := \frac{x^{i-1} d x}{2y}. \end{aligned}$$

The extended Abel map from the \(g\)-th symmetric product of the universal cover \(\Gamma _\infty C_g\) of the curve \(C_g\) to \({\mathbb C}^g\) is defined by,

$$\begin{aligned} w :{S}^g \Gamma _\infty C_g \longrightarrow \mathbb C^g, \quad \left( w\left( \Gamma _{\left( x_1,y_1\right) ,\infty },\ldots , \Gamma _{\left( x_g,y_g\right) ,\infty }\right) := \sum _{i=1}^g \int _{ \Gamma _{\left( x_g,y_g\right) ,\infty }} {\nu ^{I}}\right) , \end{aligned}$$

where \(\Gamma _{(x_g,y_g),\infty }\) is a path in the path space \(\Gamma _\infty C_g\).

Consider \( \mathrm {H}_1(C_g, \mathbb Z) =\bigoplus _{j=1}^g\mathbb Z\alpha _{j} \oplus \bigoplus _{j=1}^g\mathbb Z\beta _{j}, \) the homology group of the hyperelliptic curve \(C_g\), where the intersections are given by \([\alpha _i, \alpha _j]=0\), \([\beta _i, \beta _j]=0\) and \([\alpha _i, \beta _j]=\delta _{i,j}\). Here we employ the choice illustrated in Fig. 5.

Fig. 5
figure 5

a \(C_g\) and b \(\hat{C}_{2g-1}\)

The (half-period) hyperelliptic integrals of the first kind are defined by,

$$\begin{aligned} {\omega }':=\frac{1}{2}\left[ \left( \int _{\alpha _{j}}{\nu ^{I}}^{}_{i}\right) _{ij}\right] , \quad {\omega }'':=\frac{1}{2}\left[ \left( \int _{\beta _{j}}{\nu ^{I}}^{}_{i}\right) _{ij}\right] , \quad {\omega }:=\left[ \begin{matrix} {\omega }' \\ {\omega }'' \end{matrix}\right] . \end{aligned}$$

If we let:

$$\begin{aligned} \omega _a:=\int ^{B_a}_\infty {\nu ^{I}}, \quad (a=0, 1, 2, \ldots , 2g-1, 2g), \end{aligned}$$

Figure 5 shows:

$$\begin{aligned} \omega '_a = \omega _{2a - 1}, \quad \omega ''_a = \omega _{2a} - \omega _{2a - 1}, \quad a>1. \end{aligned}$$

The Jacobian \({\mathcal J}_g\) is defined as the complex torus,

$$\begin{aligned} {\mathcal J}_g := \mathbb C^g /{{\Lambda }}_g. \end{aligned}$$

Here \({\Lambda }_g\) is a \(2g\)-dimensional lattice generated by the period matrix given by \(2{\omega }\). We also use the same letter \(u\) for a vector in \(\mathbb C^g\) and a point of the Jacobian \({\mathcal J}_g\).

Using the (unnormalized) differentials of the second kind,

$$\begin{aligned} {\nu ^{II}}_j =\dfrac{1}{2 y}\sum _{k=j}^{2g-j}\left( k+1-j\right) \lambda _{k+1+j} x^k d x, \quad \quad \left( j=1, \ldots , g\right) , \end{aligned}$$

the half-period hyperelliptic matrices of the second kind are defined by,

$$\begin{aligned} {\eta }':=\frac{1}{2}\left[ \left( \int _{\alpha _{j}}{\nu ^{II}}_{i}\right) _{ij}\right] , \quad {\eta }'':=\frac{1}{2}\left[ \left( \int _{\beta _{j}}{\nu ^{II}}_{i}\right) _{ij}\right] . \end{aligned}$$

The hyperelliptic \(\sigma \) function, which is a holomorphic function over \(u\in \mathbb C^g\), is defined by [4,  p. 336, p. 350], [7, 15],

$$\begin{aligned} \sigma (u):=\sigma (u;C_g): =\ \gamma \mathrm {exp}\left( -\dfrac{1}{2}\ ^t\ u {\eta }'{{\omega }'}^{-1}u\right) \vartheta \!\left[ \begin{matrix} \delta '' \\ \delta ' \end{matrix}\right] \left( \frac{1}{2}{{\omega }'}^{-1}u ; \tau \right) , \end{aligned}$$
(11.2)

where \(\gamma \) is a certain constant factor, \(\vartheta \left[ \!\right] \) is the Riemann \(\theta \) function with characteristics,

$$\begin{aligned} \vartheta \!\left[ \begin{matrix} a \\ b \end{matrix}\right] (z; \tau ) :=\sum _{n \in \mathbb Z^g} \exp \left[ 2\pi \sqrt{-1}\left\{ \dfrac{1}{2} \ ^t\!(n+a) \tau (n+a) + \ ^t\!(n+a)(z+b)\right\} \right] , \end{aligned}$$

with \( \tau :={{\omega }'}^{-1}{\omega }''\) for \(g\)-dimensional vectors \(a\) and \(b\), and

$$\begin{aligned} \delta ' :=\ ^t\left[ \begin{array}{llll} \dfrac{g}{2}&\quad \dfrac{g-1}{2}&\quad \cdots&\quad \dfrac{1}{2} \end{array}\right] , \quad \delta '':=\ ^t\left[ \begin{array}{lll} \dfrac{1}{2}&\quad \cdots&\quad \dfrac{1}{2} \end{array}\right] . \end{aligned}$$

Proposition 11.1

If for \(u\), \(v\in {\mathbb C}^3\), and \(\ell \) (\(=2\omega '\ell '+2\omega ''\ell ''\)) \(\in \Lambda \), we define

$$\begin{aligned} L(u,v)&:=2{}^t{u}(\eta 'v'+\eta ''v''),\nonumber \\ \chi (\ell )&:=\exp [\pi \sqrt{-1}\big (2({}^t {\ell '}\delta ''-{}^t {\ell ''}\delta ') +{}^t {\ell '}\ell ''\big )] \ (\in \{1,\,-1\}), \end{aligned}$$

the following holds

$$\begin{aligned} \sigma (u + \ell ) = \sigma (u) \exp (L(u + \frac{1}{2}\ell , \ell )) \chi (\ell ). \end{aligned}$$

Definition 11.2

  1. (1)

    We define the double coverings of \({\mathcal J}_g\) by

    $$\begin{aligned} {\mathcal J}_g^{(a)} = {\mathbb C}^g / \Lambda ^{(a)}, \end{aligned}$$

    where \(\Lambda ^{(0)} := \bigcap _{a=1}^{2g} \Lambda ^{(a)}\),

    $$\begin{aligned} \Lambda ^{(a)} :=&2 {\mathbb Z}\omega '_a + 4 {\mathbb Z}\omega ''_a + \sum _{b=1,\ne a} (2 {\mathbb Z}\omega '_b + 2 {\mathbb Z}\omega ''_b) \quad \hbox {for } a = 1, 3, \ldots , 2g-1,\\ \Lambda ^{(a)} :=&4 {\mathbb Z}\omega '_a +4 {\mathbb Z}\omega ''_a) + \sum _{b=1,\ne a} (2 {\mathbb Z}\omega '_b + 2 {\mathbb Z}\omega ''_b) \quad \hbox {for } a = 2, 4, \ldots , 2g.\\ \end{aligned}$$
  2. (2)

    For a point \(\Gamma _{P_c,\infty }\in \Gamma _\infty C_g\),

    $$\begin{aligned} \varepsilon _r^{(c)}: \Gamma _{\infty } C_g \rightarrow {\mathbb Z}_2 \end{aligned}$$

    be defined by \(\varepsilon _r^{(c)}:=w_r-w_\infty \) for the winding number \(w_r\) around \(B_a\) in \(\kappa _\infty \Gamma _\infty C_g\) and the winding number \(w_\infty \) around \(\infty \) in \(\kappa _\infty \Gamma _\infty C_g\). For a point \((\Gamma _{P_1,\infty }, \Gamma _{P_2,\infty },\ldots ,\Gamma _{P_g,\infty })\) in \(S^g \Gamma _{\infty } C_g\), let

    $$\begin{aligned} \varepsilon _r: S^g \Gamma _{\infty } C_g \rightarrow {\mathbb Z}_2, \quad (\varepsilon _r:= \varepsilon _r^{(1)} + \varepsilon _r^{(2)} + \cdots +\varepsilon _r^{(g)}). \end{aligned}$$
  3. (3)

    For a point \((\Gamma _{P_1,\infty }, \Gamma _{P_2,\infty },\ldots ,\Gamma _{P_g,\infty })\) in \(S^g \Gamma _{\infty } C_g\), let \(u=w (\Gamma _{P_1,\infty }, \Gamma _{P_2,\infty },\ldots ,\Gamma _{P_g,\infty })\). The hyperelliptic \(\mathrm {al}\) function over \({\mathcal J}^{(r)}\) and \(w^{-1}{\mathcal J}^{(r)}\) as a subset of a quotient space of in \(S^g \Gamma _{\infty } C_g\), is formally defined by [4, p.340], [31],

    $$\begin{aligned} \mathrm {al}_r(u): = (-1)^{\varepsilon _r( \Gamma _{\infty , P_1}, \Gamma _{\infty , P_2},\ldots ,\Gamma _{\infty , P_g})} \sqrt{F(b_r)} , \end{aligned}$$
    (11.3)

    where

    $$\begin{aligned} F(x):= (x-x_1) \cdots (x-x_g), \end{aligned}$$
    (11.4)

    for a preimage \((\Gamma _{(x_i, y_i),\infty })_{i=1, \ldots , g} \in S^g\Gamma _{\infty }C_g\) of \(w((\Gamma _{(x_i, y_i),\infty })_{i=1, \ldots , g}) = u \in {\mathcal J}^{(r)}\) under the Abel map.

Remark 11.3

The definition (11.3) is historically

$$\begin{aligned} \mathrm {al}_r(u) = \tilde{\gamma }_r\sqrt{F(b_r)} , \end{aligned}$$
(11.5)

where \(\tilde{\gamma }_r:=\sqrt{-1/P'(b_r)}\). Thus the preimage of \(w\) of \({\mathcal J}^{(r)}\) is a quotient space of \(S^g\Gamma _{\infty } C_g\). We comment on the sign \((-1)^{\varepsilon }\) in the right-hand side of (11.3). The hyperelliptic curve \(C_g\) admits the hyperelliptic involution \(\iota _H : (x, y) \rightarrow (x, -y)\). In a neighborhood of the branch point \(B_r=(b_r,0)\), \(y\) or \(t\) such that \(t^2 = (x - b_r)\) are local parameters. Thus for \(t_i\) such that \(t_i^2 := (x_i - b_r)\) \(\iota _H^{(a)} t_i = - t_i\). Similarly, \(t_1 t_2 \cdots t_g\) is defined in a neighborhood of \(B_r\) and \(\iota _H\) can be made to act on the product: a circuit around the point produces the factor \((-1)^{\varepsilon _r( \Gamma _{\infty , P_1}, \Gamma _{\infty , P_2},\ldots ,\Gamma _{\infty , P_g})}\).

Further the inverse \(1/t_i\) is a local parameter at \(\infty \) and thus there is an action \(\iota _H^{(\infty )} (1/t_i) = - (1/t_i)\), and a circuit around \(\infty \) generates \((-1)^{\varepsilon _r( \Gamma _{\infty , P_1}, \Gamma _{\infty , P_2},\ldots ,\Gamma _{\infty , P_g})}\).

However we claim that we can make sense of \(t_1 t_2 \cdots t_g\) globally and (11.5) holds globally by (11.3). In analogy to Jacobi’s sn, cn, dn functions, we need to extend the domain of the Jacobi inversion from \({\mathcal J}_g\) to \({\mathcal J}_g^{(r)}\) and \({\mathcal J}_g^{(0)}\). We show the extension in Proposition 11.10; here we consider the behavior of the right-hand side of (11.3). Let us regard it as a function of \(w(P_1)\) by fixing \(P_2\), \(\ldots \), \(P_g\). Then a circuit around \(\alpha _b\) (see Fig. 5a) does not have any effect on the sign factor of \(t_1\). On the other hand, when we go around \(\beta _a\) in Fig. 5a once, \(t_1\) acquires a sign and in order to cancel it, we need to go twice around \(\beta _a\). Thus the (homotopy) equivalence relation is the same as that which holds for \({\mathcal J}_g^{(a)}\).

Proposition 11.4

Introducing the half-period \(\omega _r := \int ^{b_r}_\infty du^{}\), we have the relation [4, 340],

$$\begin{aligned} \mathrm {al}_r(u) =\gamma _r'' \frac{ \exp (-{}^t u \varphi _r) \sigma ( u + \omega _r)}{\sigma (u)}, \quad r=1,2,\ldots ,2g, \end{aligned}$$
(11.6)

where \(\gamma _r''\) is a certain constant.

$$\begin{aligned} \varphi _r = \left\{ \begin{array}{ll} {\eta }'{{\omega }'}^{-1}\omega '_r &{} \quad r = 1, 3, \ldots , 2g - 1, \\ {\eta }''{{\omega }''}^{-1}\omega ''_r +{\eta }'{{\omega }'}^{-1}\omega '_r &{} \quad r = 2, 4, \ldots , 2g . \\ \end{array}\right. \end{aligned}$$

Proof

By comparing zeros and poles of both sides, we have the result. \(\square \)

Proposition 11.5

For a lattice point \(\ell \) in \(\Lambda ^{(b)}\)

$$\begin{aligned} \mathrm {al}_b(u)=\mathrm {al}_b(u+ \ell ). \end{aligned}$$

Proof

We know:

$$\begin{aligned} \frac{\sigma (u + \omega _b+ \ell )}{\sigma (u+\ell )} = \frac{\sigma (u + \omega _b)}{\sigma (u)} \exp (L(\omega _b , \ell )) . \end{aligned}$$

For the \(b = 2a -1\) case,

$$\begin{aligned} L( \omega _b' , \ell )&= 2^t\omega _b' (\eta '\ell ' +\eta ''\ell '')\\&=2^t\omega _b' \eta '\ell ' +2^t\omega _b''\eta '\ell ''-\pi {\sqrt{-1}}\ell ''_b,\nonumber \end{aligned}$$
(11.7)

whereas

$$\begin{aligned} 2^t(\omega '\ell ' +\omega ''\ell '')\eta ' \omega ^{\prime -1}\omega _b' = 2^t\ell '{}^t\eta '\omega _b'+2{}^t\ell ''\omega _b''\eta '. \end{aligned}$$
(11.8)

Hence we have the equality. \(\square \)

As a generalization of the relation \(\mathrm {sn}^2 u + \mathrm {cn}^2 u = 1\), we have the following relation.

Proposition 11.6

Let \(A_a(x) = P(x) (x-b_a)\) and \(a \in \{2, 4, \ldots , 2g\}\).

$$\begin{aligned} \sum _{r = 1, 3, \ldots , 2g-1, a} \frac{\mathrm {al}_r(x)^2}{A'_a(b_r)} =1. \end{aligned}$$

Proof

See [31, p. 292] and also [22, Proposition 3.4]. \(\square \)

Remark 11.7

The relation implies the \(g\) homogeneous identities,

$$\begin{aligned} \sum _{r = 1, 3, \ldots , 2g-1, a} \frac{(\gamma _r'')^2 \mathrm e^{-2{}^t u \varphi _r} }{A'_a(b_r)} \sigma ( u + \omega _r)^2 \equiv \sigma (u)^2, \quad a = 2, 4, \ldots , 2g, \end{aligned}$$

among \(2g+1\) homogeneous coordinates, namely, \(\sigma ( u + \omega _r)\) (\(r=1,2,\ldots ,2g\)) and \(\sigma (u)\). Noting that the square of each \(\mathrm {al}_r\) is a function over the hyperelliptic Jacobi variety \({\mathcal J}_g\), these quadrics cut out the image of the Jacobian, which is a \(g\)-dimensional variety embedded in \(\mathbb {P}^{2g}\).

Remark 11.8

For the genus-one case, the Weierstrass \(\wp \) function corresponds to a curve \(y^2 = (x - e_1) (x - e_2) (x - e_3)\), whereas the Jacobi \(\mathrm {sn}\) functions is defined on:

$$\begin{aligned} w^2 = (z^2 - 1) (z^2 - k^2), \end{aligned}$$
(11.9)

where \(w = y / z\sqrt{(e_2-e_1)^3}\), \(z = \sqrt{(x - e_1)/(e_2-e_1)}\) and

$$\begin{aligned} \frac{dx}{2 y} =2 \sqrt{e_2-e_1} \frac{ dz }{2 w}. \end{aligned}$$

We have employed a curve (11.1) with \(f(x)\) of odd degree (thus a branchpoint at \(\infty \)), and the associated \(\wp _{ij}\) function.

Note that when \(g=1\), (11.10) is essentially reduced to (11.9).

Given that the \(\mathrm {al}_r\) function is a generalization of the \(\mathrm {sn}\)-function, we considered a genus \(2g-1\) curve \(\hat{C}_{2g-1}\) whose affine part is given by

$$\begin{aligned} w^2 = \prod _{i=1, \ne r}^{2g+1} ( z^2 - a_i), \end{aligned}$$
(11.10)

where \(a_i = b_i - b_r\), \(z = \sqrt{x - b_r}\),    and \(w = y/z\).

Let \((b_i, 0)=B_i \in C_g\) be the branch points on the affine plane and \((x, y) \in C_g\) be a general point \(P\). For \(c_i^2 := a_i\), let \((\pm c_i, 0) \in \hat{C}_{2g-1}\) be \(\hat{B}_i^\pm \) as a finite branch point and \(( z, w) \in C_g\) be a general point \(\hat{P}^\pm \).

There is an involution \(\iota _A: (z, w) \mapsto (- z, w)\) as well as the hyperelliptic involution \(\hat{\iota }_H: (z, w) \mapsto (z, - w)\) and \(\iota _H: (x, y) \mapsto (x, -y)\).

At the point \(\infty \) of \(\hat{C}_{2g+1}\), acting by \(\iota _H\) and \(\iota _A\), we identify the actions \(\hat{\iota }_H\) and \(\iota _A\), i.e.,

$$\begin{aligned} \hat{\iota }_H : \pm \infty \mapsto \mp \infty , \quad \iota _A : \pm \infty \mapsto \mp \infty . \end{aligned}$$

On the other hand \((0, 0) \in \hat{C}_{2g+1}\), which corresponds to \(B_r \in C_{g}\) is the fixed point of \(\hat{\iota }_H\) and \(\iota _A\).

Let us consider the \(r=1\) case. Then there is a double covering:

$$\begin{aligned} \varpi _{g}: \hat{C}_{2g-1} \rightarrow C_g, \quad (\hat{P} =(z, w) \mapsto P = (z^2 + b_r, wz)), \end{aligned}$$

and

$$\begin{aligned} (0,0) \mapsto B_1, \quad \hat{B}_i^\pm \rightarrow B_i, \quad (i = 2, 3, \cdots , 2g, 2g+1). \end{aligned}$$

We illustrate this in Fig. 6, which is essentially the same as the picture in [1, p.296].

Fig. 6
figure 6

\(\varpi : \hat{C}_{2g-1} \rightarrow C_g\)

The (unnormalized) basis of holomorphic one-forms over \(\hat{C}_{2g-1}\) is denoted by

$$\begin{aligned} \hat{{\nu ^{I}}} := \begin{pmatrix} \hat{{\nu ^{I}}}_1 \\ \hat{{\nu ^{I}}}_2 \\ \vdots \\ \hat{{\nu ^{I}}}_{2g-1} \\ \end{pmatrix}, \quad \hat{\nu }^I_j = \frac{z^{j-1} dz}{ w}, \quad (j = 1, 2, \ldots , 2g - 1). \end{aligned}$$

Here we have removed the factor \(1/2\) for later convenience. Let us consider the Abel map

$$\begin{aligned} \hat{w} :{S}^k \Gamma _{-\infty } \hat{C}_{2g-1} \longrightarrow {\mathbb C}^{2g-1}, \quad \left( \hat{w}(\Gamma _{(x_1,y_1),-\infty },\ldots ,\Gamma _{(x_k,y_k),-\infty }):= \sum _{i=1}^k \int _{\Gamma _{(x_i,y_i),-\infty }} \hat{{\nu ^{I}}} \right) . \end{aligned}$$

As the contours in Fig. 5b illustrate, the associated periodic matrices are given as,

$$\begin{aligned} (\hat{\omega '}, \hat{\omega ''}) := \frac{1}{2}\left( \left( \int _{\hat{\alpha }_1} \hat{{\nu ^{I}}}, \left( \int _{\hat{\alpha }_i^+} \hat{{\nu ^{I}}}, \int _{\hat{\alpha }_i^-} \hat{{\nu ^{I}}}\right) _{i=2, \ldots , g}\right) , \left( \int _{\hat{\beta }_1} \hat{{\nu ^{I}}}, \left( \int _{\hat{\beta }_i^+} \hat{{\nu ^{I}}}, \int _{\hat{\beta }_i^-} \hat{{\nu ^{I}}}\right) _{i=2, \ldots , g}\right) \right) . \end{aligned}$$

The lattice associated with the curve \(\hat{C}_{2g-1}\) is denoted by \(\hat{\Lambda }\) and its Jacobian by \(\hat{{\mathcal J}}_{2g-1} = {\mathbb C}^{2g-1}/\hat{\Lambda }\).

Direct computations show the following facts:

Proposition 11.9

  1. (1)
    $$\begin{aligned} \frac{z^{2i-2} dz}{w} = \frac{x^{i-1} dx}{2 y}, \quad (i=1, \ldots , g), \quad \varpi ^*{\nu ^{I}}= \begin{pmatrix} \hat{{\nu ^{I}}}_1\\ \hat{{\nu ^{I}}}_3\\ \vdots \\ \hat{{\nu ^{I}}}_{2g-1}\\ \end{pmatrix}. \end{aligned}$$
  2. (2)
    $$\begin{aligned} \hat{\iota }_H \varpi ^* {\nu ^{I}}= \varpi ^* \iota _H {\nu ^{I}}= \hat{\iota }_A \varpi ^* {\nu ^{I}}. \end{aligned}$$
  3. (3)

    By defining

    $$\begin{aligned} \left( \sum _{i}^g\int _{\Gamma _{(x_i,y_i),-\infty }} \varpi ^*{\nu ^{I}}\right) , \end{aligned}$$

    \(\hat{w}_{\varpi ^* {\nu ^{I}}} : S^g \Gamma _{-\infty }\hat{C}_{2g-1} \rightarrow {\mathbb C}^g\) is a surjection.

Figure 5 shows that as half of \(\beta _1\) consists of the path from \(\infty \) to \(B_1\), the path from \(\pm \infty \) to \((0,0)\) in \(\hat{C}_{2g-1}\) corresponds to a quarter of \(\hat{\beta }_1\). Each \(\hat{\beta }_a^\pm \) \((a =2, \ldots , g)\) consists of a contour from \(\pm \infty \) to \(\hat{B}_{2a -1}^\pm \). Similarly we have \(\hat{\alpha }_a^\pm \) \((a =1, \ldots , g)\).

Noting that \(({B_1} \rightarrow B_2)\) lifts to \((0,0) \rightarrow \hat{B}_2^{(\pm )})\), we find that

$$\begin{aligned} \int ^{B_2}_{B_1} \nu ^I = \frac{1}{2} \int ^{\hat{B}_2}_{(0,0)} \varpi ^*\nu ^I \end{aligned}$$

is a half-period in \(\hat{C}_{2g-1}\). The \((2(2g-1) \times g)\) matrix \((\hat{\omega '}, \hat{\omega ''})|_{\varpi {\nu ^{I}}}\) is given by

$$\begin{aligned} (\omega '_1, \omega _2', \omega _2', \ldots , \omega _g', \omega _g', 2\omega ''_1, \omega _2'', \omega _2'', \ldots , \omega _g'', \omega _g''). \end{aligned}$$

The corresponding lattice is denoted by \(\hat{\Lambda }\) and the Jacobian by \(\hat{{\mathcal J}} = {\mathbb C}^{2g-1}/\hat{\Lambda }\).

Proposition 11.10

Let

$$\begin{aligned} {\hat{{\mathcal J}}}^{\mathrm {al},(1)}_g := \frac{\hat{w}_{\varpi ^* {\nu ^{I}}}(S^g\Gamma _{-\infty } \hat{C}_{2g-1}) }{\hat{\Lambda } \cap \hat{w}_{\varpi ^* {\nu ^{I}}}(S^g \Gamma _{-\infty }\hat{C}_{2g-1}) }. \end{aligned}$$

Then the following function is defined on \({\hat{{\mathcal J}}}^{\mathrm {al},(1)}_g\),

$$\begin{aligned} (z_1 z_2 \cdots z_g)(u), \end{aligned}$$

where \((z_1, z_2, \ldots , z_g)\) in \(S^g\Gamma _{-\infty } \hat{C}_{2g-1}\) is any preimage of \(u\) under the extended Abel map.

By identifying \(w(S^g\Gamma _{\infty } C_g)={\mathbb C}^g\) and \(\hat{w}_{\varpi ^* {\nu ^{I}}}(S^g\Gamma _{-\infty }\hat{C}_{2g-1})={\mathbb C}^g\), \({\hat{{\mathcal J}}}^{\mathrm {al},(1)}_g\) and \({{\mathcal J}}^{(1)}_g\) agree, and their \(\mathrm {al}_1\) function is expressed by

$$\begin{aligned} \mathrm {al}_1(u) = (z_1 z_2 \cdots z_g)(u). \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsutani, S., Previato, E. The \(\mathrm {al}\) function of a cyclic trigonal curve of genus three. Collect. Math. 66, 311–349 (2015). https://doi.org/10.1007/s13348-015-0138-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13348-015-0138-y

Keywords

Navigation