Skip to main content

Advertisement

Log in

In vivo comparison of biomineralized scaffold-directed osteogenic differentiation of human embryonic and mesenchymal stem cells

  • Research Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Human pluripotent stem cells such as embryonic stem cells (hESCs) and multipotent stem cells like mesenchymal stem cells (hMSCs) hold great promise as potential cell sources for bone tissue regeneration. Comparing the in vivo osteogenesis of hESCs and hMSCs by biomaterial-based cues provides insight into the differentiation kinetics of these cells as well as their potential to contribute to bone tissue repair in vivo. Here, we compared in vivo osteogenic differentiation of hESCs and hMSCs within osteoinductive calcium phosphate (CaP)-bearing biomineralized scaffolds that recapitulate a bone-specific mineral microenvironment. Both hESCs and hMSCs underwent osteogenic differentiation responding to the biomaterial-based instructive cues. Furthermore, hMSCs underwent earlier in vivo osteogenesis compared to hESCs, but both stem cell types acquired a similar osteogenic maturation by 8 weeks of implantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gamie Z, MacFarlane RJ, Tomkinson A, Moniakis A, Tran GT, Gamie Y, et al. Skeletal tissue engineering using mesenchymal or embryonic stem cells: clinical and experimental data. Expert Opin Biol Ther. 2014;14(11):1611–39.

    Article  CAS  PubMed  Google Scholar 

  2. Marolt D, Knezevic M, Novakovic GV. Bone tissue engineering with human stem cells. Stem Cell Res Ther. 2010;1(10):1–10.

    Google Scholar 

  3. Seong JM, Kim B-C, Park J-H, Kwon IK, Mantalaris A, Hwang Y-S. Stem cells in bone tissue engineering. Biomed Mater. 2010;5(6):062001.

    Article  PubMed  Google Scholar 

  4. Varghese S, Hwang NS, Ferran A, Hillel A, Theprungsirikul P, Canver AC, et al. Engineering musculoskeletal tissues with human embryonic germ cell derivatives. Stem Cells. 2010;28(4):765–74.

    Article  CAS  PubMed  Google Scholar 

  5. Hwang NS, Varghese S, Lee HJ, Zhang Z, Elisseeff J. Biomaterials directed in vivo osteogenic differentiation of mesenchymal cells derived from human embryonic stem cells. Tissue Eng A. 2013;19(15-16):1723–32.

    Article  CAS  Google Scholar 

  6. de Peppo GM, Marcos-Campos I, Kahler DJ, Alsalman D, Shang L, Vunjak-Novakovic G, et al. Engineering bone tissue substitutes from human induced pluripotent stem cells. Proc Natl Acad Sci U S A. 2013;110(21):8680–5.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Karp JM, Ferreira LS, Khademhosseini A, Kwon AH, Yeh J, Langer RS. Cultivation of human embryonic stem cells without the embryoid body step enhances osteogenesis in vitro. Stem Cells. 2006;24(4):835–43.

    Article  PubMed  Google Scholar 

  8. Ahn SE, Kim S, Park KH, Moon SH, Lee HJ, Kim GJ, et al. Primary bone-derived cells induce osteogenic differentiation without exogenous factors in human embryonic stem cells. Biochem Biophys Res Commun. 2006;340(2):403–8.

    Article  CAS  PubMed  Google Scholar 

  9. Hwang NS, Zhang C, Hwang YS, Varghese S. Mesenchymal stem cell differentiation and roles in regenerative medicine. Wiley Interdiscip Rev Syst Biol Med. 2009;1(1):97–106.

    Article  CAS  PubMed  Google Scholar 

  10. Shimko DA, Burks CA, Dee KC, Nauman EA. Comparison of in vitro mineralization by murine embryonic and adult stem cells cultured in an osteogenic medium. Tissue Eng. 2004;10(9-10):1386–98.

    Article  CAS  PubMed  Google Scholar 

  11. Marolt D, Campos IM, Bhumiratana S, Koren A, Petridis P, Zhang G, et al. Engineering bone tissue from human embryonic stem cells. Proc Natl Acad Sci. 2012;109(22):8705–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Both SK, van Apeldoorn AA, Jukes JM, Englund MC, Hyllner J, van Blitterswijk CA, et al. Differential bone-forming capacity of osteogenic cells from either embryonic stem cells or bone marrow-derived mesenchymal stem cells. J Tissue Eng Regen Med. 2011;5(3):180–90.

    Article  CAS  PubMed  Google Scholar 

  13. Bilousova G, Jun DH, King KB, De Langhe S, Chick WS, Torchia EC, et al. Osteoblasts derived from induced pluripotent stem cells form calcified structures in scaffolds both in vitro and in vivo. Stem Cells. 2011;29(2):206–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Levi B, Hyun JS, Montoro DT, Lo DD, Chan CK, Hu S, et al. In vivo directed differentiation of pluripotent stem cells for skeletal regeneration. Proc Natl Acad Sci U S A. 2012;109(50):20379–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Peng Y, Kang Q, Luo Q, Jiang W, Si W, Liu BA, et al. Inhibitor of DNA binding/differentiation helix-loop-helix proteins mediate bone morphogenetic protein-induced osteoblast differentiation of mesenchymal stem cells. J Biol Chem. 2004;279(31):32941–9.

    Article  CAS  PubMed  Google Scholar 

  16. Friedman MS, Long MW, Hankenson KD. Osteogenic differentiation of human mesenchymal stem cells is regulated by bone morphogenetic protein-6. J Cell Biochem. 2006;98(3):538–54.

    Article  CAS  PubMed  Google Scholar 

  17. Kawaguchi J, Mee PJ, Smith AG. Osteogenic and chondrogenic differentiation of embryonic stem cells in response to specific growth factors. Bone. 2005;36(5):758–69.

    Article  CAS  PubMed  Google Scholar 

  18. Brey DM, Motlekar NA, Diamond SL, Mauck RL, Garino JP, Burdick JA. High-throughput screening of a small molecule library for promoters and inhibitors of mesenchymal stem cell osteogenic differentiation. Biotechnol Bioeng. 2011;108(1):163–74.

    Article  CAS  PubMed  Google Scholar 

  19. Phadke A, Shih YRV, Varghese S. Mineralized synthetic matrices as an instructive microenvironment for osteogenic differentiation of human mesenchymal stem cells. Macromol Biosci. 2012;12(8):1022–32.

    Article  CAS  PubMed  Google Scholar 

  20. Madl CM, Mehta M, Duda GN, Heilshorn SC, Mooney DJ. Presentation of BMP-2 mimicking peptides in 3D hydrogels directs cell fate commitment in osteoblasts and mesenchymal stem cells. Biomacromolecules. 2014;15(2):445–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Petrie TA, Raynor JE, Dumbauld DW, Lee TT, Jagtap S, Templeman KL, et al. Multivalent integrin-specific ligands enhance tissue healing and biomaterial integration. Sci Transl Med. 2010;2(45):45ra60.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yang C, Tibbitt MW, Basta L, Anseth KS. Mechanical memory and dosing influence stem cell fate. Nat Mater. 2014;13(6):645–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cameron K, Travers P, Chander C, Buckland T, Campion C, Noble B. Directed osteogenic differentiation of human mesenchymal stem/precursor cells on silicate substituted calcium phosphate. J Biomed Mater Res A. 2013;101(1):13–22.

    Article  PubMed  Google Scholar 

  24. Müller P, Bulnheim U, Diener A, Lüthen F, Teller M, Klinkenberg ED, et al. Calcium phosphate surfaces promote osteogenic differentiation of mesenchymal stem cells. J Cell Mol Med. 2008;12(1):281–91.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kang H, Wen C, Hwang Y, Shih Y-RV, Kar M, Seo SW, et al. Biomineralized matrix-assisted osteogenic differentiation of human embryonic stem cells. J Mater Chem B. 2014;2(34):5676–88.

    Article  CAS  Google Scholar 

  26. Kang H, Shih Y-RV, Hwang Y, Wen C, Rao V, Seo T, et al. Mineralized gelatin methacrylate-based matrices induce osteogenic differentiation of human induced pluripotent stem cells. Acta Biomater. 2014;10(12):4961–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. LeGeros RZ. Calcium phosphate-based osteoinductive materials. Chem Rev. 2008;108(11):4742–53.

    Article  PubMed  Google Scholar 

  28. Chai YC, Roberts SJ, Desmet E, Kerckhofs G, van Gastel N, Geris L, et al. Mechanisms of ectopic bone formation by human osteoprogenitor cells on CaP biomaterial carriers. Biomaterials. 2012;33(11):3127–42.

    Article  CAS  PubMed  Google Scholar 

  29. Ayala R, Zhang C, Yang D, Hwang Y, Aung A, Shroff SS, et al. Engineering the cell–material interface for controlling stem cell adhesion, migration, and differentiation. Biomaterials. 2011;32(15):3700–11.

    Article  CAS  PubMed  Google Scholar 

  30. Lin S, Sangaj N, Razafiarison T, Zhang C, Varghese S. Influence of physical properties of biomaterials on cellular behavior. Pharm Res. 2011;28(6):1422–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang C, Aung A, Liao L, Varghese S. A novel single precursor-based biodegradable hydrogel with enhanced mechanical properties. Soft Matter. 2009;5(20):3831–4.

    Article  CAS  Google Scholar 

  32. Phadke A, Zhang C, Hwang Y, Vecchio K, Varghese S. Templated mineralization of synthetic hydrogels for bone-like composite materials: Role of matrix hydrophobicity. Biomacromolecules. 2010;11(8):2060–8.

    Article  CAS  PubMed  Google Scholar 

  33. Oyane A, Kim HM, Furuya T, Kokubo T, Miyazaki T, Nakamura T. Preparation and assessment of revised simulated body fluids. J Biomed Mater Res A. 2003;65(2):188–95.

    Article  PubMed  Google Scholar 

  34. Chang C-W, Hwang Y, Brafman D, Hagan T, Phung C, Varghese S. Engineering cell–material interfaces for long-term expansion of human pluripotent stem cells. Biomaterials. 2013;34(4):912–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Deans RJ, Moseley AB. Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol. 2000;28(8):875–84.

    Article  CAS  PubMed  Google Scholar 

  36. Phadke A, Hwang Y, Hee Kim S, Hyun Kim S, Yamaguchi T, Masuda K, et al. Effect of scaffold microarchitecture on osteogenic differentiation of human mesenchymal stem cells. Eur Cell Mater. 2013;25:114–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Shih Y-R, Phadke A, Yamaguchi T, Kang H, Inoue N, Masuda K, et al. Synthetic bone mimetic matrix-mediated in situ bone tissue formation through host cell recruitment. Acta Biomater. 2015;19:1–9.

    Article  CAS  PubMed  Google Scholar 

  38. Kang H, Shih Y-RV, Varghese S. Biomineralized matrices dominate soluble cues to direct osteogenic differentiation of human mesenchymal stem cells through adenosine signaling. Biomacromolecules. 2015;16(3):1050–61.

    Article  CAS  PubMed  Google Scholar 

  39. Barradas A, Yuan H, Blitterswijk CA, Habibovic P. Osteoinductive biomaterials: current knowledge of properties, experimental models and biological mechanisms. Eur Cell Mater. 2011;21:407–29.

    CAS  PubMed  Google Scholar 

  40. Yuan H, Fernandes H, Habibovic P, de Boer J, Barradas AM, de Ruiter A, et al. Osteoinductive ceramics as a synthetic alternative to autologous bone grafting. Proc Natl Acad Sci. 2010;107(31):13614–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yang H, Zeng H, Hao L, Zhao N, Du C, Liao H, et al. Effects of hydroxyapatite microparticles morphology on bone mesenchymal stem cell behavior. J Mater Chem B. 2014;2:4703–10.

    Article  CAS  Google Scholar 

  42. Choi S, Murphy WL. A screening approach reveals the influence of mineral coating morphology on human mesenchymal stem cell differentiation. Biotechnol J. 2013;8:496–501.

    Article  CAS  PubMed  Google Scholar 

  43. Wen L, Wang Y, Wang H, Kong L, Zhang L, Chen X, et al. L-type calcium channels play a crucial role in the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells. Biochem Biophys Res Commun. 2012;424:439–45.

    Article  CAS  PubMed  Google Scholar 

  44. Barradas A, Fernandes HA, Groen N, Chai YC, Schrooten J, van de Peppel J, et al. A calcium-induced signaling cascade leading to osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells. Biomaterials. 2012;33(11):3205–15.

    Article  CAS  PubMed  Google Scholar 

  45. Shih Y-RV, Hwang Y, Phadke A, Kang H, Hwang NS, Caro EJ, et al. Calcium phosphate-bearing matrices induce osteogenic differentiation of stem cells through adenosine signaling. Proc Natl Acad Sci. 2014;111(3):990–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Suarez-Gonzalez D, Barnhart K, Migneco F, Flanagan C, Hollister SJ, Murphy WL. Controllable mineral coatings on PCL scaffolds as carriers for growth factor release. Biomaterials. 2012;33(2):713–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Suárez-González D, Lee JS, Lan Levengood SK, Vanderby Jr R, Murphy WL. Mineral coatings modulate β-TCP stability and enable growth factor binding and release. Acta Biomater. 2012;8(3):1117–24.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Liu Y, Hunziker EB, Layrolle P, De Bruijn JD, De Groot K. Bone morphogenetic protein 2 incorporated into biomimetic coatings retains its biological activity. Tissue Eng. 2004;10(1-2):101–8.

    Article  CAS  PubMed  Google Scholar 

  49. Yuan H, Zou P, Yang Z, Zhang X, De Bruijn J, De Groot K. Bone morphogenetic protein and ceramic-induced osteogenesis. J Mater Sci Mater Med. 1998;9(12):717–21.

    Article  CAS  PubMed  Google Scholar 

  50. Murphy W, Simmons C, Kaigler D, Mooney D. Bone regeneration via a mineral substrate and induced angiogenesis. J Dent Res. 2004;83(3):204–10.

    Article  CAS  PubMed  Google Scholar 

  51. Kaigler D, Wang Z, Horger K, Mooney DJ, Krebsbach PH. VEGF scaffolds enhance angiogenesis and bone regeneration in irradiated osseous defects. J Bone Miner Res : Off J Am Soc Bone Miner Res. 2006;21(5):735–44.

    Article  CAS  Google Scholar 

  52. Xiao X, Wang W, Liu D, Zhang H, Gao P, Geng L, et al. The promotion of angiogenesis induced by three-dimensional porous beta-tricalcium phosphate scaffold with different interconnection sizes via activation of PI3K/Akt pathways. Sci Rep. 2015;5:9409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health (NIH; Grant 1 R01 AR063184-01A1). The hMSCs used in this study were provided by Texas A&M University from the NIH (Grant P40RR017447).

Conflict of interest

Authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyni Varghese.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, C., Kang, H., Shih, YR.V. et al. In vivo comparison of biomineralized scaffold-directed osteogenic differentiation of human embryonic and mesenchymal stem cells. Drug Deliv. and Transl. Res. 6, 121–131 (2016). https://doi.org/10.1007/s13346-015-0242-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-015-0242-2

Keywords

Navigation