Skip to main content

Advertisement

Log in

Systemic delivery of nanoparticle formulation of novel tubulin inhibitor for treating metastatic melanoma

  • Research Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Clinical translation of tubulin inhibitors for treating melanoma is limited by multidrug efflux transporters, poor aqueous solubility, and dose-limiting peripheral toxicities. Tubulin inhibitors with efficacy in taxane-resistant cancers are promising drug candidates and can be used as single agent or in conjunction with other chemotherapy. Systemic therapy of such a novel tubulin inhibitor, 2-(1H-indol-5-yl)thiazol-4-yl)3,4,5-trimethoxyphenyl methanone (abbreviated as LY293), is limited by its poor aqueous solubility. The objective of this study was to design a polymeric nanocarrier for systemic administration of LY293 to improve tumor accumulation and reduce side effects of tubulin inhibitor in a lung metastasis melanoma mouse model. Methoxy polyethylene glycol-b-poly(carbonate-co-lactide) (mPEG-b-P(CB-co-LA)) random copolymer was synthesized and characterized by 1H NMR and gel permeation chromatography (GPC). Polymeric nanoparticles were formulated using oil/water (o/w) emulsification method with a mean particle size of 150 nm and loading efficiency of 7.40 %. Treatment with LY293-loaded nanoparticles effectively inhibited the proliferation of melanoma cells in vitro and exhibited concentration-dependent cell cycle arrest in G2/M phase. Mitotic arrest activated the intrinsic apoptotic machinery by increasing the cellular levels of cleaved poly ADP ribose polymerase (PARP) and fraction of sub-G1 cells. In vivo, LY293-loaded nanoparticles significantly inhibited the proliferation of highly aggressive metastasized melanoma in a syngeneic lung metastasis melanoma mouse model without toxicity to vital organs. In conclusion, we have designed a promising polymeric nanocarrier for systemic delivery of LY293 for treating metastatic melanoma while minimizing the toxicity associated with the administration of cosolvents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bhatia S, Tykodi SS, Thompson JA. Treatment of metastatic melanoma: an overview. Oncology (Williston Park). 2009;23:488–96.

    Google Scholar 

  2. Gray-Schopfer V, Wellbrock C, Marais R. Melanoma biology and new targeted therapy. Nature. 2007;445:851–7.

    Article  CAS  PubMed  Google Scholar 

  3. Dummer R, Flaherty KT. Resistance patterns with tyrosine kinase inhibitors in melanoma: new insights. Curr Opin Oncol. 2012;24:150–4.

    Article  CAS  PubMed  Google Scholar 

  4. Sun C, Wang L, Huang S, Heynen GJ, Prahallad A, Robert C, et al. Reversible and adaptive resistance to BRAF(V600E) inhibition in melanoma. Nature. 2014;508:118–22.

    Article  CAS  PubMed  Google Scholar 

  5. Hersh EM, O’Day SJ, Ribas A, Samlowski WE, Gordon MS, Shechter DE, et al. A phase 2 clinical trial of nab-paclitaxel in previously treated and chemotherapy-naive patients with metastatic melanoma. Cancer. 2010;116:155–63.

    CAS  PubMed  Google Scholar 

  6. Chang W, Lee SJ, Park S, Choi MK, Hong JY, Kim YS, et al. Effect of paclitaxel/carboplatin salvage chemotherapy in noncutaneous versus cutaneous metastatic melanoma. Melanoma Res. 2013;23:147–51.

    Article  CAS  PubMed  Google Scholar 

  7. Lu Y, Li CM, Wang Z, Ross 2nd CR, Chen J, Dalton JT, et al. Discovery of 4-substituted methoxybenzoyl-aryl-thiazole as novel anticancer agents: synthesis, biological evaluation, and structure-activity relationships. J Med Chem. 2009;52:1701–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Lu Y, Li CM, Wang Z, Chen J, Mohler ML, Li W, et al. Design, synthesis, and SAR studies of 4-substituted methoxylbenzoyl-aryl-thiazoles analogues as potent and orally bioavailable anticancer agents. J Med Chem. 2011;54:4678–93.

    Article  CAS  PubMed  Google Scholar 

  9. Lu Y, Chen J, Xiao M, Li W, Miller DD. An overview of tubulin inhibitors that interact with the colchicine binding site. Pharm Res. 2012;29:2943–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Wang Z, Chen J, Wang J, Ahn S, Li CM, Lu Y, et al. Novel tubulin polymerization inhibitors overcome multidrug resistance and reduce melanoma lung metastasis. Pharm Res. 2012;29:3040–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. ten Bokkel Huinink WW, Eisenhauer E, Swenerton K. Preliminary evaluation of a multicenter, randomized comparative study of TAXOL (paclitaxel) dose and infusion length in platinum-treated ovarian cancer. Canadian-European Taxol Cooperative Trial Group. Cancer Treat Rev. 1993;19(Suppl C):79–86.

    Article  PubMed  Google Scholar 

  12. Hamaguchi T, Kato K, Yasui H, Morizane C, Ikeda M, Ueno H, et al. A phase I and pharmacokinetic study of NK105, a paclitaxel-incorporating micellar nanoparticle formulation. Br J Cancer. 2007;97:170–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Danquah M, Li F, Duke 3rd CB, Miller DD, Mahato RI. Micellar delivery of bicalutamide and embelin for treating prostate cancer. Pharm Res. 2009;26:2081–92.

    Article  CAS  PubMed  Google Scholar 

  14. Danquah M, Fujiwara T, Mahato RI. Self-assembling methoxypoly(ethylene glycol)-b-poly(carbonate-co-L-lactide) block copolymers for drug delivery. Biomaterials. 2010;31:2358–70.

    Article  CAS  PubMed  Google Scholar 

  15. Gaucher G, Marchessault RH, Leroux JC. Polyester-based micelles and nanoparticles for the parenteral delivery of taxanes. J Control Release. 2010;143:2–12.

    Article  CAS  PubMed  Google Scholar 

  16. Danquah MK, Zhang XA, Mahato RI. Extravasation of polymeric nanomedicines across tumor vasculature. Adv Drug Deliv Rev. 2011;63:623–39.

    Article  PubMed  Google Scholar 

  17. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release. 2000;65:271–84.

    Article  CAS  PubMed  Google Scholar 

  18. Mundra V, Lu Y, Danquah M, Li W, Miller DD, Mahato RI. Formulation and characterization of polyester/polycarbonate nanoparticles for delivery of a novel microtubule destabilizing agent. Pharm Res. 2012;29:3064–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Nederberg F, Lohmeijer BG, Leibfarth F, Pratt RC, Choi J, Dove AP, et al. Organocatalytic ring opening polymerization of trimethylene carbonate. Biomacromolecules. 2007;8:153–60.

    Article  CAS  PubMed  Google Scholar 

  20. Lohmeijer B, Pratt RC, Leibfarth F, Logan JW, Long DA, Dove AP, et al. Guanidine and amidine organocatalysts for ring-opening polymerization of cyclic esters. Macromolecules. 2006;39:8574–83.

    Article  CAS  Google Scholar 

  21. Tas F. Metastatic behavior in melanoma: timing, pattern, survival, and influencing factors. J Oncol. 2012;2012:647684.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Soengas MS, Lowe SW. Apoptosis and melanoma chemoresistance. Oncogene. 2003;22:3138–51.

    Article  CAS  PubMed  Google Scholar 

  23. Frank NY, Margaryan A, Huang Y, Schatton T, Waaga-Gasser AM, Gasser M, et al. ABCB5-mediated doxorubicin transport and chemoresistance in human malignant melanoma. Cancer Res. 2005;65:4320–33.

    Article  CAS  PubMed  Google Scholar 

  24. La Porta CA. Drug resistance in melanoma: new perspectives. Curr Med Chem. 2007;14:387–91.

    Article  PubMed  Google Scholar 

  25. Li CM, Chen J, Lu Y, Narayanan R, Parke DN, Li W, et al. Pharmacokinetic optimization of 4-substituted methoxybenzoyl-aryl-thiazole and 2-aryl-4-benzoyl-imidazole for improving oral bioavailability. Drug Metab Dispos. 2011;39:1833–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Dahan A, Sabit H, Amidon GL. Multiple efflux pumps are involved in the transepithelial transport of colchicine: combined effect of p-glycoprotein and multidrug resistance-associated protein 2 leads to decreased intestinal absorption throughout the entire small intestine. Drug Metab Dispos. 2009;37:2028–36.

    Article  CAS  PubMed  Google Scholar 

  27. Dahan A, Amidon GL. Grapefruit juice and its constituents augment colchicine intestinal absorption: potential hazardous interaction and the role of p-glycoprotein. Pharm Res. 2009;26:883–92.

    Article  CAS  PubMed  Google Scholar 

  28. Kamber NE, Jeong W, Waymouth RM, Pratt RC, Lohmeijer BG, Hedrick JL. Organocatalytic ring-opening polymerization. Chem Rev. 2007;107:5813–40.

    Article  CAS  PubMed  Google Scholar 

  29. Bero M, Czapla B, Dobrzynski P, Janeczek H, Kasperczyk J. Copolymerization of glycolide and ε-caprolactone, 2. random copolymerization in the presence of tin octoate. Macromol Chem Phys. 1999;200:911–6.

    Article  CAS  Google Scholar 

  30. Seow WY, Yang YY. Functional polycarbonates and their self-assemblies as promising non-viral vectors. J Control Release. 2009;139:40–7.

    Article  CAS  PubMed  Google Scholar 

  31. Maeda H, Bharate GY, Daruwalla J. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur J Pharm Biopharm. 2009;71:409–19.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by NIH/NCI grant R01CA148706 to WL. We would also like to thank Dr. Yuri Sheinin of the Department of Pathology & Microbiology of the University of Nebraska Medical Center for his assistance in interpreting the histopathology data.

Conflicts of Interest

All authors declare that there are no potential conflicts of interest.

Animal studies

All institutional and national guidelines for the care and use of laboratory animals were followed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram I. Mahato.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mundra, V., Peng, Y., Kumar, V. et al. Systemic delivery of nanoparticle formulation of novel tubulin inhibitor for treating metastatic melanoma. Drug Deliv. and Transl. Res. 5, 199–208 (2015). https://doi.org/10.1007/s13346-015-0226-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-015-0226-2

Keywords

Navigation