Skip to main content
Log in

Effect of gamma irradiation on drug releasing from nano-bioactive glass

  • Research Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

In this work, we studied the effect of gamma irradiation on nano-bioactive glass (NBG) structure, bioactivity, drug loading efficiency, and drug release kinetic. Gamma irradiation was mainly introduced as a safe and cheap method to tailor the drug loading and release efficiencies. NBG was investigated before and after gamma irradiation with two doses 25 and 50 kGy. Vancomycin antibiotic was used as a drug model, and different kinetic models (first order, Higuchi, Hixson-Crowell, and Baker-Lonsdale models) were used to study the mechanism of drug release. It was found that G25 sample showed the lowest affinity for vancomycin adsorption, but it showed the highest release rate. Also, vancomycin was released from all samples by diffusion mechanism from spherically shaped carrier. On the other hand, the bioactivity of NBG was not altered by gamma irradiation; in contrary, newly formed apatite layers were more well-crystalline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Chen QZ, Li Y, Jin LY, Quinn JMW, Komesaroff PA. A new sol–gel process for producing Na2O-containing bioactive glass ceramics. Acta Biomater. 2010;6:4143–53.

    Article  CAS  PubMed  Google Scholar 

  2. Waltimo T, Brunner TJ, Vollenweider M, Stark WJ, Zehnder M. Antimicrobial effect of nanometric bioactive glass 45S5. J Dent Res. 2007;86:754–7.

    Article  CAS  PubMed  Google Scholar 

  3. Hench LL, Splinter RJ, Greenlee T, Kand Allen WC. J Biomed Mater Res. 1971;2:117.

    Article  Google Scholar 

  4. Brauer DS, Karpukhina N, O’Donnell MD, Law RV, Hill RG. Fluoride-containing bioactive glasses: effect of glass design and structure on degradation, pH and apatite formation in simulated body fluid. Acta Biomater. 2010;6:3275–82.

    Article  CAS  PubMed  Google Scholar 

  5. Goel A, Kapoor S, Rajagopal RR, Pascual MJ, Kim HW. J.M.F. Ferreira alkali-free bioactive glasses for bone tissue engineering: a preliminary investigation. Acta Biomater. 2012;8:361–72.

    Article  CAS  PubMed  Google Scholar 

  6. Lusvardi G, Malavasi G, Menabue L, Aina V, Morterra C. Fluoride-containing bioactive glasses: surface reactivity in simulated body fluids solutions. Acta Biomater. 2009;5:3548–62.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang D, Hupa M, Hupa L. In situ pH within particle beds of bioactive glasses. Acta Biomater. 2008;5:1498–505.

    Article  Google Scholar 

  8. Vallet-Regi M, Colilla M, Izquierdo-Barba I. Bioactive mesoporous silicas as controlled delivery systems: application in bone tissue regeneration. J Biomed Nanotechnol. 2008;4:1–15.

    CAS  Google Scholar 

  9. Shen SC, Ng WK, Chia LS, Dong YC, Tan RB. Applications of mesoporous materials as excipients for innovative drug delivery and formulation. Curr Pharm Des. 2013;19(35):6270–89.

    Article  CAS  PubMed  Google Scholar 

  10. Rivadeneira J, Di Virgilio AL, Audisio MC, Boccaccini AR, Gorustovich AA. Evaluation of antibacterial and cytotoxic effects of nano-sized bioactive glass/collagen composites releasing tetracycline hydrochloride. J Appl Microbiol. 2014;116(6):1438–46.

    Article  CAS  PubMed  Google Scholar 

  11. Hildebrand HF, Blanchemain N, Mayer G, Chai F, Lefebvre M, Boschin F. Surface coatings for biological activation and functionalization of medical devices. Surf Coat Technol. 2006;200:6318–24.

    Article  CAS  Google Scholar 

  12. Kasemo B. Biological surface science. Surf Sci. 2002;500:656–77.

    Article  CAS  Google Scholar 

  13. Novotna Z, Reznickova A, Kvitek O, Kasalkova NS, Kolska Z, Svorcik V. Cells adhesion and growth on gold nanoparticle grafted glass. Appl Surf Sci. 2014;307:217–23.

    Article  CAS  Google Scholar 

  14. Ploetz E, Visser B, Slingenbergh W, Evers K, Martinez-Martinez D, Pei YT, et al. Selective functionalization of patterned glass surfaces. J Mater Chem B. 2014;2(17):2606–15.

    Article  CAS  Google Scholar 

  15. El-Fiqi A, Lee JH, Lee E-J, Kim H-W. Collagen hydrogels incorporated with surface-aminated mesoporous nanobioactive glass: improvement of physicochemical stability and mechanical properties is effective for hard tissue engineering. Acta Biomater. 2013;9(12):9508–21.

    Article  CAS  PubMed  Google Scholar 

  16. Wu C, Fan W, Chang J. Functional mesoporous bioactive glass nanospheres: synthesis, high loading efficiency, controllable delivery of doxorubicin and inhibitory effect on bone cancer cells. J Mater Chem B. 2013;1(21):2710–8.

    Article  CAS  Google Scholar 

  17. Griscom DL. Optical properties and structural defects in silica glass. Ceram Soc Jpn. 1991;99:923–42.

    Article  CAS  Google Scholar 

  18. El-Batal FH, El-Kheshen AA. Preparation and characterization of some substituted bioglasses and their ceramic derivatives from the system SiO2–Na2O–CaO–P2O5 and effect of gamma irradiation. Mater Chem Phys. 2008;110:352–62.

    Article  CAS  Google Scholar 

  19. Laopaiboon R, Bootjomchai C. Radiation effects on structural properties of glass by using ultrasonic techniques and FTIR spectroscopy: a comparison between local sand and SiO2. Ann Nucl Energy. 2014;68:220–7.

    Article  CAS  Google Scholar 

  20. Laopaiboon R, Bootjornchai C. Glass structure responses to gamma irradiation using infrared absorption spectroscopy and ultrasonic techniques: a comparative study between Co2O3 and Fe2O3. Appl Radiat Isot. 2014;89C:42-46.

    Article  Google Scholar 

  21. Farah K, Hosni F, Mejri A, Boizot B, Hamzaoui AH, Ouada HB. Effect of gamma rays absorbed doses and heat treatment on the optical absorption spectra of silver ion-exchanged silicate glass. Nucl Inst Methods Phys Res Sect B Beam Interact Mater Atoms. 2014;323:36–41.

    Article  CAS  Google Scholar 

  22. Xia W, Chang J. Preparation and characterization of nano-bioactive-glasses (NBG) by a quick alkali-mediated sol–gel method. Mater Lett. 2007;61:3251–3.

    Article  CAS  Google Scholar 

  23. Vallet-Regi M, Ragel CV, Salinas AJ. Glasses with medical applications. Eur J Inorg Chem. 2003;2003(6):1029–42.

    Article  Google Scholar 

  24. Zhong J, Greenspan DC. Processing and properties of sol–gel bioactive glasses. J Biomed Mater Res. 2000;53(6):694–701.

    Article  CAS  PubMed  Google Scholar 

  25. Sepulveda P, Jones JR, Hench LL. In vitro dissolution of melt-derived 45S5 and sol–gel derived 58S bioactive glasses. J Biomed Mater Res. 2002;61(2):301–3011.

    Article  CAS  PubMed  Google Scholar 

  26. Bielby RC, Christodoulou IS, Pryce RS, Radford WJP, Hench LL, Polak JM. Time- and concentration-dependent effects of dissolution products of 58S sol–gel bioactive glass on proliferation and differentiation of murine and human osteoblasts. Tissue Eng. 2004;10(7–8):1018–26.

    Article  CAS  PubMed  Google Scholar 

  27. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity. Biomaterials. 2006;27:2907–15.

    Article  CAS  PubMed  Google Scholar 

  28. Bourne DW. Pharmacokinetics. In: Banker GS, Rhodes CT, editors. Modern pharmaceutics. 4th ed. New York: Marcel Dekker Inc; 2002.

    Google Scholar 

  29. Higuchi T. Mechanism of sustained action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Pharm Sci. 1963;52:1145–9.

    Article  CAS  PubMed  Google Scholar 

  30. Hixson AW, Crowell JH. Dependence of reaction velocity upon surface and agitation: I-theoretical consideration. Ind Eng Chem. 1931;23:923–31.

    Article  CAS  Google Scholar 

  31. Costa P, Sousa Lobo JM. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13:123–33.

    Article  CAS  PubMed  Google Scholar 

  32. Cacciotti I, Lombardi M, Bianco A, Ravaglioli A, Montanaro L. Sol–gel derived 45S5 bioglass: synthesis, microstructural evolution and thermal behaviour. J Mater Sci Mater Med. 2012;23:1849–66.

    Article  CAS  PubMed  Google Scholar 

  33. Socrates G. Infrared and Raman characteristic group frequencies—tables and charts, Wiley LTD June 2007.

  34. Zhao Y, Song M, Chen C, Liu J. The role of the pressure in pulsed laser deposition of bioactive glass films. J Non-Cryst Solids. 2008;354:4000–4.

    Article  CAS  Google Scholar 

  35. Serra J, Gonzales P, Liste S, Chiussi S, Leon B, Perez-Amor M, et al. Influence of the non-bridging oxygen groups on the bioactivity of the silicate glasses. J Mater Sci Mater Med. 2002;13:1221–5.

    Article  CAS  PubMed  Google Scholar 

  36. Friebele EJ. In: Uhlmann DR, Kreidl NJ, editors. Optical properties of glass. Westerville: American Ceramic Society; 1991. p. 205–62.

    Google Scholar 

  37. Kaur R, Singh S, Pandey OP. Influence of CdO and gamma irradiation on the infrared absorption spectra of borosilicate glass. J Mol Struct. 2013;1049:409–13.

    Article  CAS  Google Scholar 

  38. Natura U, Ehrt D. Formation of radiation defects in silicate and borosilicate glasses caused by UV lamp and excimer laser irradiation. Glastech Ber Glass Sci Technol. 1999;72:295–301.

    CAS  Google Scholar 

  39. Abd Alla WM. Study of some physical and chemical properties of gamma irradiated bioglass. Msc thesis 2001.

  40. Cacaina D, Ylanen H, Udvar DA, Simon S. EPR study of gamma irradiated yttrium bioactive glasses and yttrium silica sol–gel microspheres. J Optoelectron Adv Mater. 2007;9(3):675.

    CAS  Google Scholar 

  41. Griscom DL. Introduction in glass science and technology, 4B. Academic Press; 1990.

  42. Mohanty T, Mishra NC, Bhat SV, Basu PK, Kanjilal D. Dense electronic excitation induced defects in fused silica. J Phys D Appl Phys. 2003;36(24):3151.

    Article  CAS  Google Scholar 

  43. Saravanapavan P, Jones JR, Verrier S, Beilby R, Shirtliff VJ, Hench LL. Binary CaO–SiO2 gel-glasses for biomedical applications. Biomed Mater Eng. 2004;14:467–86.

    PubMed  Google Scholar 

  44. Zhang D, Hupa M, Hupa L. In situ pH within particles beds of bioactive glasses. Acta Biomater. 2008;4:1498–505.

    Article  CAS  PubMed  Google Scholar 

  45. Balamurugan A, Balossior G, Kannan S, Michel J, Rebelo AH, Ferreira J. Development and in vitro characterization of sol–gel derived CaO–P2O5–SiO2–ZnO bioglass. Acta Biomater. 2007;3:255–62.

    Article  CAS  PubMed  Google Scholar 

  46. Padilla S, Roman J, Carenas A, Vallet-Reg M. The influence of the phosphorus content on the bioactivity of sol–gel glass ceramics. Biomaterials. 2005;26:475–83.

    Article  CAS  PubMed  Google Scholar 

  47. Saboori A, Rabiee M, Moztarzadeh F, Sheikhi M, Tahriri M, Karimi M. Synthesis, chercterization and invitro bioactivity of sol–gel derived SiO2–CaO–P2O5–MgO. Mater Sci Eng C. 2009;29(1):335–40.

    Article  CAS  Google Scholar 

  48. Bistolfi A, Massazza G, Verne E, Masse A, Deledda D, Ferraris S, Miola M, Galetto F, Crova M. Antibiotic-loaded cement in orthopedic surgery: a review. International Scholarly Research Network, 2011.

  49. Li PJ, Zhang FP. The electrochemistry of a glass-surface and its application to bioactive glass in solution. J Non-Cryst Solids. 1990;119:112–8.

    Article  CAS  Google Scholar 

  50. Doostmohammadi A, Monshi A, Fathi MH, Braissant O. A comparative physico-chemical study of bioactive glass and bone-derived hydroxyapatite. Ceram Int. 2011;37:1601–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Research Center, National Center for Radiation Research and Technology, and Faculty of Science, Al-Azhar University (Girls), located in Egypt, for a possibility to use their facilities.

Conflict of interest

The authors stated that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Farag.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farag, M.M., Abd-Allah, W.M. & Ibrahim, A.M. Effect of gamma irradiation on drug releasing from nano-bioactive glass. Drug Deliv. and Transl. Res. 5, 63–73 (2015). https://doi.org/10.1007/s13346-014-0214-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-014-0214-y

Keywords

Navigation