Skip to main content

Advertisement

Log in

RGD-conjugated solid lipid nanoparticles inhibit adhesion and invasion of αvβ3 integrin-overexpressing breast cancer cells

  • Research Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

αvβ3 integrin receptors expressed on cancer cell surfaces play a crucial role in promoting tumor angiogenesis and cancer cell metastasis. Thus, cyclic arginyl-glycyl-aspartic acid (cRGD) peptides have been explored as a αvβ3 integrin receptor-specific targeting moiety for the targeted delivery of nanoparticle-loaded therapeutics. However, our previous study showed that cyclic RGD could act as a double-edged sword that, on one hand, extended the retention of cRGD-modified solid lipid nanoparticles (RGD-SLNs) at αvβ3 integrin receptor overexpressing breast carcinoma, and yet on the other hand, decreased the amount of tumor accumulation of RGD-SLNs attributable to the greater uptake by the mononuclear phagocyte system (MPS). Therefore, we aimed to optimize the RGD-decorated nanoparticle systems for (1) inhibiting αvβ3 integrin receptor overexpressing tumor cell metastasis and (2) increasing nanoparticle accumulation to tumor site. SLNs with cRGD content ranging from 0 to 10 % mol of total polyethyleneglycol (PEG) chains were synthesized. The binding of RGD-SLNs with αvβ3 integrin receptors increased with increasing cRGD concentration on the nanoparticles. RGD-SLNs were demonstrated to inhibit MDA-MB-231 cell adhesion to fibronectin and invasion through Matrigel. In vivo whole-body fluorescence imaging revealed that 1 % cRGD on the SLNs’ surface had maximum tumor accumulation with extended tumor retention among all formulations tested in an orthotopic MDA-MB-231/EGFP breast tumor model. This work has laid a foundation for further development of anticancer drug-loaded optimized cRGD nanoparticle formulations for the treatment of breast cancer metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Desgrosellier JS, Cheresh DA. Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer. 2010;10(1):9–22.

    Article  CAS  PubMed  Google Scholar 

  2. Assoian RK, Klein EA. Growth control by intracellular tension and extracellular stiffness. Trends Cell Biol. 2008;18(7):347–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Brooks PC, Clark RA, Cheresh DA. Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science. 1994;264(5158):569–71.

    Article  CAS  PubMed  Google Scholar 

  4. Felding-Habermann B, O’Toole TE, Smith JW, Fransvea E, Ruggeri ZM, Ginsberg MH, et al. Integrin activation controls metastasis in human breast cancer. Proc Natl Acad Sci U S A. 2001;98(4):1853–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Huveneers S, van den Bout I, Sonneveld P, Sancho A, Sonnenberg A, Danen EH. Integrin alpha v beta 3 controls activity and oncogenic potential of primed c-Src. Cancer Res. 2007;67(6):2693–700.

    Article  CAS  PubMed  Google Scholar 

  6. Kumar CC, Armstrong L, Yin Z, Malkowski M, Maxwell E, Ling H, et al. Targeting integrins alpha v beta 3 and alpha v beta 5 for blocking tumor-induced angiogenesis. Adv Exp Med Biol. 2000;476:169–80.

    Article  CAS  PubMed  Google Scholar 

  7. Pytela R, Pierschbacher MD, Ruoslahti E. Identification and isolation of a 140 kd cell surface glycoprotein with properties expected of a fibronectin receptor. Cell. 1985;40(1):191–8.

    Article  CAS  PubMed  Google Scholar 

  8. Chen K, Chen X. Integrin targeted delivery of chemotherapeutics. Theranostics. 2011;1:189–200.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Wang Z, Chui WK, Ho PC. Integrin targeted drug and gene delivery. Expert Opin Drug Deliv. 2010;7(2):159–71.

    Article  CAS  PubMed  Google Scholar 

  10. Miura Y, Takenaka T, Toh K, Wu S, Nishihara H, Kano MR, et al. Cyclic RGD-linked polymeric micelles for targeted delivery of platinum anticancer drugs to glioblastoma through the blood–brain tumor barrier. ACS Nano. 2013;7(10):8583–92.

    Article  CAS  PubMed  Google Scholar 

  11. Zhan C, Gu B, Xie C, Li J, Liu Y, Lu W. Cyclic RGD conjugated poly(ethylene glycol)-co-poly(lactic acid) micelle enhances paclitaxel anti-glioblastoma effect. J Control Release. 2010;143(1):136–42.

    Article  CAS  PubMed  Google Scholar 

  12. Shen M, Huang Y, Han L, Qin J, Fang X, Wang J, et al. Multifunctional drug delivery system for targeting tumor and its acidic microenvironment. J Control Release : Off J Control Release Soc. 2012;161(3):884–92.

    Article  CAS  Google Scholar 

  13. Jiang X, Xin H, Gu J, Xu X, Xia W, Chen S, et al. Solid tumor penetration by integrin-mediated pegylated poly(trimethylene carbonate) nanoparticles loaded with paclitaxel. Biomaterials. 2013;34(6):1739–46.

    Article  CAS  PubMed  Google Scholar 

  14. van de Ven AL, Kim P, Haley O, Fakhoury JR, Adriani G, Schmulen J, et al. Rapid tumoritropic accumulation of systemically injected plateloid particles and their biodistribution. J Control Release : Off J Control Release Soc. 2012;158(1):148–55.

    Article  Google Scholar 

  15. Bartlett DW, Su H, Hildebrandt IJ, Weber WA, Davis ME. Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proc Natl Acad Sci U S A. 2007;104(39):15549–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Choi CHJ, Alabi CA, Webster P, Davis ME. Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles. Proc Natl Acad Sci U S A. 2010;107(3):1235–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Kirpotin DB, Drummond DC, Shao Y, Shalaby MR, Hong KL, Nielsen UB, et al. Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res. 2006;66(13):6732–40.

    Article  CAS  PubMed  Google Scholar 

  18. Shuhendler AJ, Prasad P, Leung M, Rauth AM, Dacosta RS, Wu XY. A novel solid lipid nanoparticle formulation for active targeting to tumor alpha(v) beta(3) integrin receptors reveals cyclic RGD as a double-edged sword. Adv Healthc Mater. 2012;1(5):600–8.

    Article  CAS  PubMed  Google Scholar 

  19. Georgoulis A, Havaki S, Drosos Y, Goutas N, Vlachodimitropoulos D, Aleporou-Marinou V, et al. RGD binding to integrin Alphavbeta3 affects cell motility and adhesion in primary human breast cancer cultures. Ultrastruct Pathol. 2012;36(6):387–99.

    Article  PubMed  Google Scholar 

  20. Li S, Wei J, Yuan L, Sun H, Liu Y, Zhang Y, et al. RGD-modified endostatin peptide 30 derived from endostatin suppresses invasion and migration of HepG2 cells through the alphavbeta3 pathway. Cancer Biother Radiopharm. 2011;26(5):529–38.

    Article  CAS  PubMed  Google Scholar 

  21. Gehlsen KR, Argraves WS, Pierschbacher MD, Ruoslahti E. Inhibition of in vitro tumor cell invasion by Arg-Gly-Asp-containing synthetic peptides. J Cell Biol. 1988;106(3):925–30.

    Article  CAS  PubMed  Google Scholar 

  22. Elias DR, Poloukhtine A, Popik V, Tsourkas A. Effect of ligand density, receptor density, and nanoparticle size on cell targeting. Nanomedicine. 2012.

  23. Hak S, Helgesen E, Hektoen HH, Huuse EM, Jarzyna PA, Mulder WJ, et al. The effect of nanoparticle polyethylene glycol surface density on ligand-directed tumor targeting studied in vivo by dual modality imaging. ACS Nano. 2012;6(6):5648–58.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Waite CL, Roth CM. Binding and transport of PAMAM-RGD in a tumor spheroid model: the effect of RGD targeting ligand density. Biotechnol Bioeng. 2011;108(12):2999–3008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Shuhendler AJ, Prasad P, Chan HK, Gordijo CR, Soroushian B, Kolios M, et al. Hybrid quantum dot-fatty ester stealth nanoparticles: toward clinically relevant in vivo optical imaging of deep tissue. ACS Nano. 2011;5(3):1958–66.

    Article  CAS  PubMed  Google Scholar 

  26. Humphries JD, Schofield NR, Mostafavi-Pour Z, Green LJ, Garratt AN, Mould AP, et al. Dual functionality of the anti-beta1 integrin antibody, 12G10, exemplifies agonistic signalling from the ligand binding pocket of integrin adhesion receptors. J Biol Chem. 2005;280(11):10234–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Belvisi L, Riccioni T, Marcellini M, Vesci L, Chiarucci I, Efrati D, et al. Biological and molecular properties of a new alpha(v)beta3/alpha(v)beta5 integrin antagonist. Mol Cancer Ther. 2005;4(11):1670–80.

    Article  CAS  PubMed  Google Scholar 

  28. Humphries MJ. Cell adhesion assays. Methods Mol Biol. 2009;522:203–10.

    Article  CAS  PubMed  Google Scholar 

  29. Moutasim KA, Nystrom ML, Thomas GJ. Cell migration and invasion assays. Methods Mol Biol. 2011;731:333–43.

    Article  CAS  PubMed  Google Scholar 

  30. Wong NC, Mueller BM, Barbas CF, Ruminski P, Quaranta V, Lin EC, et al. Alphav integrins mediate adhesion and migration of breast carcinoma cell lines. Clin Exp Metastasis. 1998;16(1):50–61.

    Article  CAS  PubMed  Google Scholar 

  31. Craik DJ, Fairlie DP, Liras S, Price D. The future of peptide-based drugs. Chem Biol Drug Des. 2013;81(1):136–47.

    Article  CAS  PubMed  Google Scholar 

  32. Hong S, Leroueil PR, Majoros IJ, Orr BG, Baker Jr JR, Banaszak Holl MM. The binding avidity of a nanoparticle-based multivalent targeted drug delivery platform. Chem Biol. 2007;14(1):107–15.

    Article  CAS  PubMed  Google Scholar 

  33. Shukla R, Thomas TP, Peters J, Kotlyar A, Myc A, Baker Jr JR. Tumor angiogenic vasculature targeting with PAMAM dendrimer-RGD conjugates. Chem Commun (Camb). 2005(46):5739–41.

  34. Torchilin VP. Passive and active drug targeting: drug delivery to tumors as an example. Handb Exp Pharmacol. 2010;197:3–53.

    Article  CAS  PubMed  Google Scholar 

  35. Grobmyer SR, Zhou G, Gutwein LG, Iwakuma N, Sharma P, Hochwald SN. Nanoparticle delivery for metastatic breast cancer. Nanomedicine. 2012;8 Suppl 1:S21–30.

    Article  CAS  PubMed  Google Scholar 

  36. Shokeen M, Pressly ED, Hagooly A, Zheleznyak A, Ramos N, Fiamengo AL, et al. Evaluation of multivalent, functional polymeric nanoparticles for imaging applications. ACS Nano. 2011;5(2):738–47.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Hrkach J, Von Hoff D, Mukkaram Ali M, Andrianova E, Auer J, Campbell T et al. Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci Transl Med. 2012;4(128):128ra39.

  38. Bauer K, Mierke C, Behrens J. Expression profiling reveals genes associated with transendothelial migration of tumor cells: a functional role for alphavbeta3 integrin. Int J Cancer. 2007;121(9):1910–8.

    Article  CAS  PubMed  Google Scholar 

  39. Takayama S, Ishii S, Ikeda T, Masamura S, Doi M, Kitajima M. The relationship between bone metastasis from human breast cancer and integrin alpha(v)beta3 expression. Anticancer Res. 2005;25(1A):79–83.

    CAS  PubMed  Google Scholar 

  40. Pal SK, Childs BH, Pegram M. Triple negative breast cancer: unmet medical needs. Breast Cancer Res Treat. 2011;125(3):627–36.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and evolving paradigms. Cell. 2011;147(2):275–92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Li ZB, Cai W, Cao Q, Chen K, Wu Z, He L, et al. (64)Cu-labeled tetrameric and octameric RGD peptides for small-animal PET of tumor alpha(v)beta(3) integrin expression. J Nucl Med. 2007;48(7):1162–71.

    Article  CAS  PubMed  Google Scholar 

  43. Liu S. Radiolabeled cyclic RGD peptides as integrin alpha(v)beta(3)-targeted radiotracers: maximizing binding affinity via bivalency. Bioconjug Chem. 2009;20(12):2199–213.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Moghimi SM, Szebeni J. Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog Lipid Res. 2003;42(6):463–78.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the Canadian Breast Cancer Foundation-Ontario Region. The authors also acknowledge the scholarships from the National Science and Engineering Research Council of Canada to D. Shan and J. Li, the University of Toronto Fellowships to D. Shan and P. Prasad, and the University of Toronto Nanotechnology Network Award and Anna and Alex Beverly Fellowship to D. Shan.

Animal studies

All institutional and national guidelines for the care and use of laboratory animals were followed

Conflict of interest

D. Shan, P. Cai, J. Li, P. Prasad, F. Liu, A.M. Rauth, and X.Y. Wu declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Yu Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, D., Li, J., Cai, P. et al. RGD-conjugated solid lipid nanoparticles inhibit adhesion and invasion of αvβ3 integrin-overexpressing breast cancer cells. Drug Deliv. and Transl. Res. 5, 15–26 (2015). https://doi.org/10.1007/s13346-014-0210-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-014-0210-2

Keywords

Navigation