Skip to main content

Advertisement

Log in

Multifunctional polyion complex micelle featuring enhanced stability, targetability, and endosome escapability for systemic siRNA delivery to subcutaneous model of lung cancer

  • Research Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

For systemic small interfering RNA (siRNA) delivery to tumor mass, a multifunctional polyion complex micelle was constructed with a block copolymer bearing a targeting ligand and a micelle-stabilizing moiety as well as an endosome-disrupting cationic unit. The block copolymer was comprised of poly(ethylene glycol) (PEG) and a polyaspartamide derivative with flanking cationic tetraethylenepentamine (TEP) moiety (PAsp(TEP)), in which the distal ends of PEG and PAsp(TEP) were further installed with cyclic RGD (cRGD) peptide ligand and cholesteryl (Chol) moiety, respectively. The resulting polymer was confirmed to form siRNA-loaded micelle with a diameter of sub 50 nm and a narrow size distribution. In the stability assays with fluorescently labeled siRNA, the terminal Chol moiety significantly suppressed both the rapid dissociation of the micelles in the serum-containing medium and their rapid elimination from the bloodstream, presumably due to its hydrophobic interactions in the micellar core. Moreover, the targeting cRGD ligand, associated with the stabilizing moiety, significantly enhanced the accumulation of siRNA-loaded micelle in a subcutaneous lung (A549) tumor, compared to a non-targeted control, after systemic administration. Ultimately, significant tumor growth inhibition was achieved by systemic administration of the targeted/stabilized micelle incorporating polo-like kinase 1 (Plk1) siRNA with negligible liver toxicity, consistent with the significant sequence-specific gene silencing of Plk1 in the tumor tissue. These results demonstrated the therapeutic potential of cRGD-PEG-PAsp(TEP)-Chol/siRNA micelle for systemic siRNA delivery toward cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Burnett JC, Rossi JJ. RNAi-based therapeutics: current progress and future prospects. Chem Biol. 2012;19:60–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhang S, Zhi D, Huang L. Lipid-based vectors for siRNA delivery. J Drug Target. 2012;20:724–35.

    Article  CAS  PubMed  Google Scholar 

  3. Wagner E. Polymers for siRNA delivery: inspired by viruses to be targeted, dynamic, and precise. Acc Chem Res. 2012;45:1005–13.

    Article  CAS  PubMed  Google Scholar 

  4. Zhang M, Kataoka K. Nano-structured composites based on calcium phosphate for cellular delivery of therapeutic and diagnostic agents. Nano Today. 2009;4:508–17.

    Article  CAS  Google Scholar 

  5. Lytton-Jean AK, Langer R, Anderson DG. Five years of siRNA delivery: spotlight on gold nanoparticles. Small. 2011;7:1932–7.

    Article  CAS  PubMed  Google Scholar 

  6. Woodle MC, Lasic DD. Sterically stabilized liposomes. Biochim Biophys Acta. 1992;1113:171–99.

    Article  CAS  PubMed  Google Scholar 

  7. Kataoka K, Kwon GS, Yokoyama M, Okano T, Sakurai Y. Block copolymer micelles as vehicles for drug delivery. J Control Release. 1993;24:119–32.

    Article  CAS  Google Scholar 

  8. Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev. 2001;53:283–318.

    CAS  PubMed  Google Scholar 

  9. Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev. 2001;47:113–31.

    Article  CAS  PubMed  Google Scholar 

  10. Harris JM, Chess RB. Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov. 2003;2:214–21.

    Article  CAS  PubMed  Google Scholar 

  11. Miyata K, Christie RJ, Kataoka K. Polymeric micelles for nano-scale drug delivery. React Funct Polym. 2011;71:227–34.

    Article  CAS  Google Scholar 

  12. Christie RJ, Nishiyama N, Kataoka K. Delivering the code: polyplex carriers for deoxyribonucleic acid and ribonucleic acid interference therapies. Endocrinology. 2010;151:466–73.

    Article  CAS  PubMed  Google Scholar 

  13. Lee Y, Kataoka K. Delivery of nucleic acid drugs. Adv Polym Sci. 2012;249:95–134.

    Article  CAS  Google Scholar 

  14. Boussif O, Lezoualch F, Zanta MA, Mergny MD, Scherman D, Demeneix B, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo-polyethylenimine. Proc Natl Acad Sci U S A. 1995;92:7297–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Neu M, Fischer D, Kissel T. Recent advances in rational gene transfer vector design on poly(ethylene imine) and its derivatives. J Gene Med. 2005;7:992–1009.

    Article  CAS  PubMed  Google Scholar 

  16. Miyata K, Nishiyama N, Kataoka K. Rational design of smart supramolecular assemblies for gene delivery: chemical challenges in the creation of artificial viruses. Chem Soc Rev. 2012;41:2562–74.

    Article  CAS  PubMed  Google Scholar 

  17. Miyata K, Oba M, Nakanishi M, Fukushima S, Yamasaki Y, Koyama H, et al. Polyplexes from poly(aspartamide) bearing 1,2-diaminoethane side chains induce pH-selective, endosomal membrane destabilization with amplified transfection and negligible cytotoxicity. J Am Chem Soc. 2008;130:16287–94.

    Article  CAS  PubMed  Google Scholar 

  18. Uchida H, Miyata K, Oba M, Ishii T, Suma T, Itaka K, et al. Odd-even effect of repeating aminoethylene units in the side chain of N-substituted polyaspartamides on gene transfection profiles. J Am Chem Soc. 2011;133:15524–32.

    Article  CAS  PubMed  Google Scholar 

  19. Suma T, Miyata K, Ishii T, Uchida S, Uchida H, Itaka K, et al. Enhanced stability and gene silencing ability of siRNA-loaded polyion complexes formulated from polyaspartamide derivatives with a repetitive array of amino groups in the side chain. Biomaterials. 2012;33:2770–9.

    Article  CAS  PubMed  Google Scholar 

  20. Kim HJ, Ishii A, Miyata K, Lee Y, Wu S, Oba M, et al. Introduction of stearoyl moieties into a biocompatible cationic polyaspartamide derivative, PAsp(DET), with endosomal escaping function for enhanced siRNA-mediated gene knockdown. J Control Release. 2010;145:141–8.

    Article  CAS  PubMed  Google Scholar 

  21. Oba M, Miyata K, Osada K, Christie RJ, Sanjoh M, Li W, et al. Polyplex micelles prepared from ω-choresteryl PEG-polycation block copolymers for systemic gene delivery. Biomaterials. 2011;32:652–63.

    Article  CAS  PubMed  Google Scholar 

  22. Arap W, Pasqualini R, Ruoslahti E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science. 1998;279:377–80.

    Article  CAS  PubMed  Google Scholar 

  23. Oba M, Fukushima S, Kanayama N, Aoyagi K, Nishiyama N, Koyama H, et al. Cyclic RGD peptide-conjugated polyplex micelles as a targetable gene delivery system directed to cells possessing αvβ3 and αvβ5 integrins. Bioconjugate Chem. 2007;18:1415–23.

    Article  CAS  Google Scholar 

  24. Christie RJ, Matsumoto Y, Miyata K, Nomoto T, Fukushima S, Osada K, et al. Targeted polymeric micelles for siRNA treatment of experimental cancer by intravenous injection. ACS Nano. 2012;6:5174–89.

    Article  CAS  PubMed  Google Scholar 

  25. Li SD, Chono S, Huang L. Efficient oncogene silencing and metastasis inhibition via systemic delivery of siRNA. Mol Ther. 2008;16:942–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Judge AD, Robbins M, Tavakoli I, Levi J, Hu L, Fronda A, et al. Confirming the RNAi-mediated mechanism of action of siRNA-based cancer therapeutics in mice. J Clin Invest. 2009;119:661–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Forget D, Boturyn D, Defrancq E, Lhomme J, Dumy P. Highly efficient synthesis of peptide-oligonucleotide conjugates: chemoselective oxime and thiazolidine formation. Chem Eur J. 2001;7:3976–84.

    Article  CAS  PubMed  Google Scholar 

  28. Matsumoto Y, Nomoto T, Cabral H, Matsumoto Y, Watanabe S, Christie RJ, et al. Direct and instantaneous observation of intravenously injected substances using intravital confocal micro-videography. Biomed Opt Express. 2010;1:1209–16.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Danhier F, Le Breton A, Preat V. RGD-based strategies to target alpha(v) beta(3) integrin in cancer therapy and diagnosis. Mol Pharm. 2012;9:2961–73.

    Article  CAS  PubMed  Google Scholar 

  30. Christie RJ, Miyata K, Matsumoto Y, Nomoto T, Menasco D, Lai TC, et al. Effect of polymer structure on micelles formed between siRNA and cationic block copolymer comprising thios and amidines. Biomacromolecules. 2011;12:3174–85.

    Article  CAS  PubMed  Google Scholar 

  31. DeRouchey J, Schmidt C, Walker GF, Koch C, Plank C, Wagner E, et al. Monomolecular assembly of siRNA and poly(ethylene glycol)-peptide copolymers. Biomacromolecules. 2008;9:724–32.

    Article  CAS  PubMed  Google Scholar 

  32. Buyens K, Meyer M, Wagner E, Demeester J, De Smedt SC, Sanders NN. Monitoring the disassembly of siRNA polyplexes in serum is crucial for predicting their biological efficacy. J Control Release. 2010;141:38–41.

    Article  CAS  PubMed  Google Scholar 

  33. Kim HJ, Oba M, Pittella F, Nomoto T, Cabral H, Matsumoto Y, et al. PEG-detachable cationic polyaspartamide derivatives bearing stearoyl moieties for systemic siRNA delivery toward subcutaneous BxPC3 pancreatic tumor. J Drug Target. 2012;20:33–42.

    Article  PubMed  Google Scholar 

  34. Naeye B, Deschout H, Caveliers V, Descamps B, Braeckans K, Vanhove C, et al. In vivo disassembly of IV administered siRNA matrix nanoparticles at the renal filtration barrier. Biomaterials. 2013;34:2350–8.

    Article  CAS  PubMed  Google Scholar 

  35. Nomoto T, Matsumoto Y, Miyata K, Oba M, Fukushima S, Nishiyama N, et al. In situ quantitative monitoring of polyplexes and polyplex micelles in the blood circulation using intravital real-time confocal laser scanning microscopy. J Control Release. 2011;151:104–9.

    Article  CAS  PubMed  Google Scholar 

  36. Ivanenkov VV, Menon AG. Peptide-mediated transcytosis of phage display vectors in MDCK cells. Biochem Biophys Res Commun. 2000;276:251–7.

    Article  CAS  PubMed  Google Scholar 

  37. Jiang X, Xin H, Gu J, Xu X, Xia W, Chen S, et al. Solid tumor penetration by integrin-mediated pegylated poly(trimethylene carbonate) nanoparticles loaded with paclitaxel. Biomaterials. 2013;34:1739–46.

    Article  CAS  PubMed  Google Scholar 

  38. Temming K, Schiffelers RM, Molema G, Kok RJ. RGD-based strategies for selective delivery of therapeutics and imaging agents to the tumour vasculature. Drug Resist Updat. 2005;8:381–402.

    Article  CAS  PubMed  Google Scholar 

  39. Achilefu S, Bloch S, Markiewicz MA, Zhong T, Ye Y, Dorshow RB, et al. Synergistic effects of light-emitting probes and peptides for targeting and monitoring integrin expression. Proc Natl Acad Sci U S A. 2005;102:7976–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sancey L, Garanger E, Foilard S, Schoehn G, Hurbin A, Albiges-Rizo C, et al. Clustering and internalization of integrin alphavbeta3 with a tetrameric RGD-synthetic peptide. Mol Ther. 2009;17:837–43.

    Article  CAS  PubMed  Google Scholar 

  41. Strebhardt K, Ullrich A. Targeting polo-like kinase 1 for cancer therapy. Nat Rev Cancer. 2006;6:321–30.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Core Research Program for Evolutional Science and Technology (CREST) of the Japan Science and Technology Corporation (JST), the Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program) from the Japan Society for the Promotion of Science (JSPS), Grants-in-Aid for Scientific Research from the Japanese Ministry of Education, Culture, Sports, Science and Technology of Japan.

Conflict of interest

Every author declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kanjiro Miyata or Kazunori Kataoka.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supporting Figure 1

(PDF 94 kb)

Supporting Figure 2

(PDF 67 kb)

Supporting Figure 3

(PDF 86 kb)

Supporting Figure 4

(PDF 44 kb)

Supporting Figure 5

(PDF 62 kb)

Supporting Figure 6

(PDF 26 kb)

Supporting Figure 7

(PDF 161 kb)

Supporting Table 1

(PDF 18 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, H.J., Ishii, T., Zheng, M. et al. Multifunctional polyion complex micelle featuring enhanced stability, targetability, and endosome escapability for systemic siRNA delivery to subcutaneous model of lung cancer. Drug Deliv. and Transl. Res. 4, 50–60 (2014). https://doi.org/10.1007/s13346-013-0175-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-013-0175-6

Keywords

Navigation