Skip to main content

Advertisement

Log in

First in man bioavailability and tolerability studies of a silica–lipid hybrid (Lipoceramic) formulation: a Phase I study with ibuprofen

  • Clinical Trial
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Clinical trials addressing the viability of lipid and nanoparticle-based solid dosage forms for the oral delivery of poorly water-soluble drugs are limited to date. This Phase I study aimed to assess the comparative tolerability and oral pharmacokinetics of a novel silica nanoparticle–lipid hybrid formulation encapsulating ibuprofen (i.e., Lipoceramic-IBU) with reference to a commercial tablet (i.e., Nurofen®). The test (Lipoceramic-IBU) and reference (Nurofen®) ibuprofen formulations were characterised for physicochemical properties and in vitro solubilisation performance prior to the clinical study. A randomised, double-blinded, one-period single oral dose (20 mg ibuprofen) study was performed in 16 healthy male subjects under fasting conditions. Encapsulation of ibuprofen in a molecularly dispersed form in the Lipoceramic nanostructured silica–lipid matrices was shown to produce superior drug solubilisation in comparison to Nurofen® and the pure drug during a two-step dissolution (or solubilisation) study in aqueous buffers of pH 1.2 followed by pH 6.5. Pharmacokinetic profiles revealed an approximately 1.95-fold increased bioavailability (p=0.02) and a 1.5-fold higher maximum plasma concentration (p=0.14) for Lipoceramic-IBU with reference to Nurofen®. Review of the safety assessments, including physical examinations, clinical laboratory tests and reports of adverse events, confirmed negligible acute side effects related to the administration of blank and ibuprofen-loaded Lipoceramic formulations. This first in man study of a dry lipid and nanoparticle-based formulation successfully demonstrated the safe use and effectiveness of the nanostructured Lipoceramic microparticles in mimicking the food effects for optimising the oral absorption of poorly water-soluble compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dressman JB, Lennernas H. Oral drug absorption: Prediction and asessment. New York: Marcel Dekker; 2000.

    Google Scholar 

  2. Porter CJH, Trevaskis NL, Charman WN. Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat Rev Drug Discov. 2007;6:231–48.

    Article  CAS  PubMed  Google Scholar 

  3. Fatouros DG, Karpf DM, Nielsen FS, Mullertz A. Clinical studies with oral lipid based formulations of poorly soluble compounds. Ther Clin Risk Manag. 2007;3:591–604.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Hauss DJ. Oral lipid-based formulations: Enhancing the bioavailability of poorly water-soluble drugs. New York: Informa Healthcare USA; 2007.

    Google Scholar 

  5. Marchaud D, Hughes S. Solid dosage forms from self-emulsifying lipidic formulations. Pharm Tech Eur. 2008;20:46–9.

    CAS  Google Scholar 

  6. Cole ET, Cadé D, Benameur H. Challenges and opportunities in the encapsulation of liquid and semi-solid formulations into capsules for oral administration. Adv Drug Deliv Rev. 2008;60:747–56.

    Article  CAS  PubMed  Google Scholar 

  7. Jannin V, Musakhanian J, Marchaud D. Approaches for the development of solid and semi-solid lipid-based formulations. Adv Drug Deliv Rev. 2008;60:734–46.

    Article  CAS  PubMed  Google Scholar 

  8. Nokhodchi A, Hentzschel CM, Leopold CS. Drug release from liquisolid systems: speed it up, slow it down. Expert Opin Drug Deliv. 2011;8:191–205.

    Article  CAS  PubMed  Google Scholar 

  9. Simovic S, Barnes TJ, Tan A, Prestidge CA. Assembling nanoparticle coatings to improve the drug delivery performance of lipid based colloids. Nanoscale. 2012;4:1220–30.

    Article  CAS  PubMed  Google Scholar 

  10. Wang Z, Sun J, Wang Y, Liu X, Liu Y, Fu Q, et al. Solid self-emulsifying nitrendipine pellets: preparation and in vitro/in vivo evaluation. Int J Pharm. 2010;383:1–6.

    Article  CAS  PubMed  Google Scholar 

  11. Sander C, Holm P. Porous magnesium aluminometasilicate tablets as carrier of a cyclosporine self-emulsifying formulation. AAPS PharmSciTech. 2009;10:1388–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Janga KY, Jukanti R, Sunkavalli S, Velpula A, Bandari S, Kandadi P, et al. In situ absorption and relative bioavailability studies of zaleplon loaded self-nanoemulsifying powders. J Microencapsul. 2013;30:161–72.

    Article  CAS  PubMed  Google Scholar 

  13. Hentzschel CM, Sakmann A, Leopold CS. Suitability of various excipients as carrier and coating materials for liquisolid compacts. Drug Dev Ind Pharm. 2011;37:1200–7.

    Article  CAS  PubMed  Google Scholar 

  14. Shukla D, Chakraborty S, Singh S, Mishra B. Lipid-based oral multiparticulate formulations — advantages, technological advances and industrial applications. Expert Opin Drug Deliv. 2011;8:207–24.

    Article  CAS  PubMed  Google Scholar 

  15. Jang DJ, Jeong EJ, Lee HM, Kim BC, Lim SJ, Kim CK. Improvement of bioavailability and photostability of amlodipine using redispersible dry emulsion. Eur J Pharm Sci. 2006;28:405–11.

    Article  CAS  PubMed  Google Scholar 

  16. Hamoudi MC, Bourasset F, Domergue-Dupont V, Gueutin C, Nicolas V, Fattal E, et al. Formulations based on alpha cyclodextrin and soybean oil: an approach to modulate the oral release of lipophilic drugs. J Control Release. 2012;161:861–7.

    Article  CAS  PubMed  Google Scholar 

  17. Yi T, Wan J, Xu H, Yang X. A new solid self-microemulsifying formulation prepared by spray-drying to improve the oral bioavailability of poorly water soluble drugs. Eur J Pharm Biopharm. 2008;70:439–44.

    Article  CAS  PubMed  Google Scholar 

  18. Hu X, Lin C, Chen D, Zhang J, Liu Z, Wu W, et al. Sirolimus solid self-microemulsifying pellets: formulation development, characterization and bioavailability evaluation. Int J Pharm. 2012;438:123–33.

    Article  CAS  PubMed  Google Scholar 

  19. Nguyen T-H, Tan A, Santos L, Ngo D, Edwards GA, Porter CJH, et al. Silica–lipid hybrid (SLH) formulations enhance the oral bioavailability and efficacy of celecoxib: an in vivo evaluation. J Control Release. 2013;167:85–91.

    Article  CAS  PubMed  Google Scholar 

  20. Rowe R. Handbook of pharmaceutical excipients. 7th ed. London: Pharmaceutical Press; 2006.

    Google Scholar 

  21. Moffat AC. Clarke’s analysis of drugs and poisons. 4th ed. London: Pharmaceutical Press; 2011.

    Google Scholar 

  22. Potthast H, Dressman JB, Junginger HE, Midha KK, Oeser H, Shah VP, et al. Biowaiver monographs for immediate release solid oral dosage forms: ibuprofen. J Pharm Sci. 2005;94:2121–31.

    Article  CAS  PubMed  Google Scholar 

  23. Tamilvanan S, Sa B. In vitro and in vivo evaluation of single-unit commercial conventional tablet and sustained-release capsules compared with multiple-unit polystyrene microparticle dosage forms of ibuprofen. AAPS PharmSciTech. 2006;7:E126–34.

    Article  PubMed Central  Google Scholar 

  24. Lamprecht A, Saumet J-L, Roux J, Benoit J-P. Lipid nanocarriers as drug delivery system for ibuprofen in pain treatment. Int J Pharm. 2004;278:407–14.

    Article  CAS  PubMed  Google Scholar 

  25. Dian L, Yang Z, Li F, Wang Z, Pan X, Peng X, et al. Cubic phase nanoparticles for sustained release of ibuprofen: formulation, characterization, and enhanced bioavailability study. Int J Nanomedicine. 2013;8:845–54.

    PubMed  PubMed Central  Google Scholar 

  26. Perge L, Robitzer M, Guillemot C, Devoisselle J-M, Quignard F, Legrand P. New solid lipid microparticles for controlled ibuprofen release: formulation and characterization study. Int J Pharm. 2012;422:59–67.

    Article  CAS  PubMed  Google Scholar 

  27. Kang MJ, Jung SY, Song WH, Park JS, Choi S-U, Oh KT, et al. Immediate release of ibuprofen from Fujicalin®-based fast-dissolving self-emulsifying tablets. Drug Dev Ind Pharm. 2011;37:1298–305.

    Article  CAS  PubMed  Google Scholar 

  28. Qiao M, Luo Y, Zhang L, Ma Y, Stephenson TS, Zhu J. Sustained release coating of tablets with Eudragit® RS/RL using a novel electrostatic dry powder coating process. Int J Pharm. 2010;399:37–43.

    Article  CAS  PubMed  Google Scholar 

  29. Simovic S, Hui H, Song Y, Davey AK, Rades T, Prestidge CA. An oral delivery system for indomethicin engineered from cationic lipid emulsions and silica nanoparticles. J Control Release. 2010;143:367–73.

    Article  CAS  PubMed  Google Scholar 

  30. Simovic S, Heard P, Hui H, Song Y, Peddie F, Davey AK, et al. Dry hybrid lipid–silica microcapsules engineered from submicron lipid droplets and nanoparticles as a novel delivery system for poorly soluble drugs. Mol Pharm. 2009;6:861–72.

    Article  CAS  PubMed  Google Scholar 

  31. Tan A, Simovic S, Davey AK, Rades T, Prestidge CA. Silica–lipid hybrid (SLH) microcapsules: a novel oral delivery system for poorly soluble drugs. J Control Release. 2009;134:62–70.

    Article  CAS  PubMed  Google Scholar 

  32. Tan A, Davey AK, Prestidge CA. Silica–lipid hybrid (SLH) versus non-lipid formulations for optimising the dose-dependent oral absorption of celecoxib. Pharm Res. 2011;28:2273–87.

    Article  CAS  PubMed  Google Scholar 

  33. Tan A, Prestidge C. Nanostructured silica–lipid hybrid microparticles: a supersaturating carrier for water- and lipid-resistant compounds. Chem Lett. 2012;41:1334–6.

    Article  CAS  Google Scholar 

  34. Tan A, Martin A, Nguyen T-H, Boyd BJ, Prestidge CA. Hybrid nanomaterials that mimic the food effect: controlling enzymatic digestion for enhanced oral drug absorption. Angew Chem Int Ed. 2012;51:5475–9.

    Article  CAS  Google Scholar 

  35. Bremmell KE, Tan A, Martin A, Prestidge CA. Tableting lipid-based formulations for oral drug delivery: a case study with silica nanoparticle–lipid–mannitol hybrid microparticles. J Pharm Sci. 2012;102:684–93.

    Article  PubMed  Google Scholar 

  36. Sanganwar GP, Gupta RB. Dissolution-rate enhancement of fenofibrate by adsorption onto silica using supercritical carbon dioxide. Int J Pharm. 2008;360:213–8.

    Article  CAS  PubMed  Google Scholar 

  37. Shen S-C, Ng WK, Chia L, Hu J, Tan RBH. Physical state and dissolution of ibuprofen formulated by co-spray drying with mesoporous silica: effect of pore and particle size. Int J Pharm. 2011;410:188–95.

    Article  CAS  PubMed  Google Scholar 

  38. Adeyeye MC, Brittain HG. Preformulation in solid dosage form development. New York: Informa Healthcare; 2008.

    Google Scholar 

  39. Van Speybroeck M, Williams HD, Nguyen T-H, Anby MU, Porter CJH, Augustijns P. Incomplete desorption of liquid excipients reduces the in vitro and in vivo performance of self-emulsifying drug delivery systems solidified by adsorption onto an inorganic mesoporous carrier. Mol Pharm. 2012;9:2750–60.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Australian Research Council, the Australian National Health and Medical Research Council, ITEK Pty. Ltd., Bioinnovation South Australia, and the Australian Biotech Ceridia Pty. Ltd. for research funding and support. Specifically, Gregor Rossenberg, Sepehr Shakib and Mark Bruce are acknowledged for assistance and support in undertaking the human clinical trial.

Conflict of interest disclosure

The authors report no conflicts of interest in this work. This study was approved by the Bellberry Human Research Ethics Committee and written informed consent was legally obtained from all subjects.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Angel Tan or Clive A. Prestidge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, A., Eskandar, N.G., Rao, S. et al. First in man bioavailability and tolerability studies of a silica–lipid hybrid (Lipoceramic) formulation: a Phase I study with ibuprofen. Drug Deliv. and Transl. Res. 4, 212–221 (2014). https://doi.org/10.1007/s13346-013-0172-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-013-0172-9

Keywords

Navigation