Skip to main content

Advertisement

Log in

Current understanding of nasal morphology and physiology as a drug delivery target

  • Review Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

The nasal cavity is both a target for locally and systemically acting medications. An adequate treatment for rhinosinusitis continues to be an unmet need. With the recent approval of intranasal medications for the treatment of pain, the nasal cavity continues to be a viable route for rapid uptake into the systemic circulation. Despite the opportunities, there is still a void in the knowledge of how therapeutic entities interact with the nasal epithelium. In addition, new opportunities in mucosal immunity via nasal vaccination as well as the elusive nose to brain uptake continue to drive innovation. To facilitate understanding of the issues involved that facilitate drug delivery in the nose, a review of nasal morphology and physiology is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Baroody FM. How nasal function influences the eyes, ears, sinuses, and lungs. Proc Am Thorac Soc. 2011;8:53–61.

    Article  PubMed  Google Scholar 

  2. Petruson B, Hansson HA, Karlsson G. Structural and functional aspects of cells in the nasal mucociliary system. Arch Otolaryngol. 1984;20:518–41.

    Google Scholar 

  3. Andersen I, Proctor DF. The fate and effects of inhaled particles. In the nose: upper airway physiology and the atmospheric environment. New York: Elsevier Biomedical Press; 1982. p. 423–55.

    Google Scholar 

  4. Morrison EE, Costanzo RM. Morphology of the human olfactory epithelium. J Comp Neurol. 1990;297:1–13.

    Article  PubMed  CAS  Google Scholar 

  5. Newman SP. Scintigraphic assessment of therapeutic aerosols. Crit Rev Ther Drug Car Sys. 1993;10(1):65–109.

    CAS  Google Scholar 

  6. Kublick H, Vidgren MT. Nasal delivery systems and their effect on deposition and absorption. Adv Drug Del Rev. 1998;29:157–77.

    Article  Google Scholar 

  7. Maron Z, Shelhamer J, Kaliner M. Nasal mucus secretion. Ear Nose Throat J. 1984;63:36.

    Google Scholar 

  8. Adams DR. Transitional epithelial zone of the bovine nasal mucosa. Am J Anat. 1986;176:159–70.

    Article  PubMed  CAS  Google Scholar 

  9. Boysen M. The surface structure of the human nasal mucosa. Ciliated and metaplastic epithelium in normal individuals. A correlated study by scanning/transmission electron and light microscopy. Cell Pathol. 1982;40:279–94.

    CAS  Google Scholar 

  10. Schipper NG, Coos V, Merkus J, Frans WHM. The nasal mucociliary clearance: relevance to nasal drug delivery. Pharm Res. 1991;8(7):807–14.

    Article  PubMed  CAS  Google Scholar 

  11. Georgy MS, Peters AT. Chapter 8: rhinosinusitus. Allergy Asthma Proc. 2012;33(1):24–7.

    Article  Google Scholar 

  12. Adkins TM, Goodgold HM, Hendershot L, Slavin RG. Does inhaled pollen enter the sinus cavities? Ann Allergy Asthma Immunol. 1998;81:181–4.

    Article  PubMed  CAS  Google Scholar 

  13. Brain JD, Valberg PA. Deposition of aerosol in the respiratory tract. Am Rev Respir Dis. 1979;120:1325–73.

    PubMed  CAS  Google Scholar 

  14. Newman SP, Agnew JE, Pavia D, Clarke SW. Inhaled aerosols: lung deposition and clinical applications. Clin Phys Physiol Meas. 1982;3(1):1–20.

    Article  PubMed  CAS  Google Scholar 

  15. Gonda I, Gipps E. Model of deposition of drugs administered into the human nasal cavity. Pharm Res. 1990;7(1):69–75.

    Article  PubMed  CAS  Google Scholar 

  16. Mygind N. Upper airway: structure, function and therapy. In Aerosols in Medicine. Principles, Diagnosis, and Therapy. Amsterdam: Elsevier Science Publishers B.V; 1985. p. 1–26.

    Google Scholar 

  17. Yu G, Zhang Z, Lessman R. Fluid flow and particle diffusion in the human upper respiratory system. Aerosol Sci Tech. 1998;28:146–58.

    Article  CAS  Google Scholar 

  18. Chien YW, Yu K, Chang S. Physical, biopharmaceutical, and toxicophysiological considerations. Nasal systemic drug delivery. New York: Marcel Dekker, Inc; 1989. p. 39–88.

    Google Scholar 

  19. Hardy JG, Lee SW, Wilson CG. Intranasal drug delivery by spray and drops. J Pharm Pharmacol. 1985;37:294–7.

    Article  PubMed  CAS  Google Scholar 

  20. Suman J, Laube B, Dalby R. Validity of in vitro tests on aqueous spray pumps as surrogates for nasal deposition, absorption and biologic response. J Aero Med. 2006;19(4):510–21.

    Article  CAS  Google Scholar 

  21. Shah S, George C, Berger R, Gupta P, Wan J, Monteith D, Connor A, McDermott J, Lin W. In vivo nasal deposition from different delivery devices and formulations. USA: IPAC RS; 2011.

    Google Scholar 

  22. Kimbell JS, Segal RA, Asgharian B, Wong BA, Schroeter JD, Southall JP, Dickens CJ, Brace G, Miller FJ. Characterization of deposition from nasal spray devices using a computational fluid dynamics model of the human nasal passages. J Aerosol Med. 2007;20(1):59–74.

    Article  PubMed  Google Scholar 

  23. Djupesland P, Skretting A. Nasal deposition and clearance in man: comparison of a bidirectional powder device and a traditional liquid spray pump. JAMPD. 2012;25:1–9.

    Google Scholar 

  24. Grassin-Delyle S, Buenestado A, Naline E, Faisy C, Blouquit-Laye S, Couderc L, Le Guen M, Fischler M, Devillier P. Intranasal drug delivery: an efficient and non-invasive route for systemic administration. Focus on opioids. Pharmacol Therapeut. 2012;134:366–79.

    Article  CAS  Google Scholar 

  25. Nasal IL. Drug delivery—recent developments and future prospects. J Contr Release. 2012;161:254–63.

    Article  Google Scholar 

  26. Illum L, Jordan F, Lewis AL. CriticalSorb: a novel efficient nasal delivery system for human growth hormone based on Solutol HS15. J Control Release. 2012;162(1):194–200.

    Google Scholar 

  27. Bjork E. Starch microspheres as a nasal delivery system for drugs. Dissertation. Uppsala University (1993)

  28. McMartin C, Hutchinson LEF, Hyde R, Peters GE. Analysis of structural requirements for the absorption of drugs and macromolecules from the nasal cavity. J Pharm Sci. 1987;76(7):535–40.

    Article  PubMed  CAS  Google Scholar 

  29. Dahl AR, Hadley WM. Formaldehyde production promoted by rat nasal cytochrome P-450 dependent mono-oxygenase with nasal decongestants, essences, solvents, air pollutants and cocaine as substrates. Toxicol Appl Pharmacol. 1983;67:200.

    Article  PubMed  CAS  Google Scholar 

  30. Brittebo EB. Metabolism of progesterone by the nasal mucosa in mice and rats. Acta Pharmacol Toxicol. 1982;51:44.

    Google Scholar 

  31. Henningfield JE, Keenan RM. Nicotine delivery kinetics and abuse liability. J Consult Clin Pysch. 1993;61(5):743–50.

    Article  CAS  Google Scholar 

  32. Butorphanol (Stadol NS) package insert. Bristol Myers Squibb Company, Princeton, NJ, copyright 1999.

  33. Arora P, Sharma S, Garg S. Permeability issues in nasal drug delivery. DDT. 2002;7:18.

    Google Scholar 

  34. Illum L. The significance of animal models in the investigation of respiratory therapies. Paris: Proceedings from Practical Approaches to Nasal and Pulmonary Drug Delivery; 2000.

    Google Scholar 

  35. Hilding AC. Phagocytocis, mucus flow and ciliary action. Arch Environ Health. 1963;6:67–77.

    Google Scholar 

  36. Proctor DF, Andersen I, Lundqvist G. Nasal mucociliary function in humans. In Respiratory Defense Mechanisms Part 1. New York: Marcel Dekker, Inc; 1977. p. 427–52.

    Google Scholar 

  37. Andersen I, Proctor DF. Measurement of nasal mucociliary clearance. Eur J Resp Dis. 1983;64 Suppl 127:37–40.

    Google Scholar 

  38. Dhuria S, Hanson LR, Frey II WH. Intranasal delivery to the central nervous system: mechanisms and experimental considerations. J Pharm Sci. 2010;99:4.

    Google Scholar 

  39. Schaefer ML, Bottger B, Silver WL, Finger TE. Trigeminal collaterals in the nasal epithelium and olfactory bulb: a potential route for direct modulation of olfactory information by trigeminal stimuli. J Comp Neurol. 2002;444:221–6.

    Article  PubMed  Google Scholar 

  40. Bahadur S, Pathak K. Physicochemical and physiological considerations for efficient nose-to-brain targeting. Expert Opin Drug Deliv. 2012;9(1):19–31.

    Article  PubMed  CAS  Google Scholar 

  41. Illum L. Transport of drugs from the nasal cavity to the central nervous system. Eur J Pharm Sci. 2000;11(1):1–18.

    Article  PubMed  CAS  Google Scholar 

  42. Craft S, Baker LD, Montine TJ, Minoshima S, Watson GS, Claxton A, Arbuckle M, Callaghan M, Tsai E, Plymate SR, Green PS, Leverenz J, Cross D, Gerton B. Intranasal insulin therapy for alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial. Arch Neurol. 2012;69(1):29–38.

    Article  PubMed  Google Scholar 

  43. Debertin AS, Tschernig T, Tönjes H, Kleemann WJ, Tröger HD, Pabst R. Nasal-associated lymphoid tissue (NALT): frequency and localization in young children. Clin Exp Immunol. 2003;134:503–7.

    Article  PubMed  CAS  Google Scholar 

  44. Brandtzaeg P. Potential of nasopharynx-associated lymphoid tissue for vaccine responses in the airways. Am J Respir Crit Care Med. 2011;183:1595–604.

    Article  PubMed  Google Scholar 

  45. Kiyono H, Fukuyama S. NALT—versus Peyer’s—patch mediated mucosal immunity. Immunol. 2004;4:699–710.

    CAS  Google Scholar 

  46. Harris AS, Nilsson IM, Wagner ZG, Alkner U. Intranasal administration of peptides: nasal deposition, biological response, and absorption of desmopressin. J Pharm Sci. 1986;75(11):1085–8.

    Article  PubMed  CAS  Google Scholar 

  47. Hirai S, Yashiki T, Matsuzawa T, Mima H. Absorption of drugs from the nasal mucosa of rat. Int J Pharm. 1981;7:317.

    Article  CAS  Google Scholar 

  48. Cho HJ, Choi MK, Lin H, Kim JS, Chung SJ, Shim CK, Kim DD. Expression and functional activity of P-glycoprotein in passaged primary human nasal epithelial cell monolayers cultured by the air–liquid interface method for nasal drug transport study. J Pharm Pharmacol. 2011;63(3):385–91.

    Article  PubMed  CAS  Google Scholar 

  49. Fabricant ND. The pH of the throat, nose and ear. Eye Ear Nose Throat Mon. 1964;43:60.

    Google Scholar 

  50. Tweedie AR. Reaction of nasal mucosa. Acta Otolaryngol. 1936;24:151.

    Article  Google Scholar 

  51. Pennington AK, Ratcliffe JH, Wilson CG, Hardy JG. The influence of solution viscosity on nasal spray deposition and clearance. Inter J Pharm. 1988;43:221–4.

    Article  CAS  Google Scholar 

  52. Harris AS, Svensson E, Wagner ZG, Lethagen S, Nilsson IM. Effect of viscosity on size, deposition, and clearance of nasal delivery systems containing desmopressin. J Pharm Sci. 1988;77(5):405–8.

    Article  PubMed  CAS  Google Scholar 

  53. Harris AS, Svensson E, Wagner ZG, Lethagen S, Nilsson IM. Effect of viscosity on the pharmacokinetics and biologic response to intranasal desmopressin. J Pharm Sci. 1989;78(6):470–1.

    Article  PubMed  CAS  Google Scholar 

  54. Kundoor V, Dalby RN. Effect of formulation- and administration-related variables on deposition pattern of nasal spray pumps evaluated using a nasal cast. Pharm Res. 2011;28(8):1895–904.

    Article  PubMed  CAS  Google Scholar 

  55. Marple B, Roland P, Benninger M. Safety review of benzalkonium chloride used as a preservative in intranasal solutions: an overview of conflicting data and opinions. Otolaryngol Head Neck Surg. 2004;130(1):131–41.

    Article  PubMed  Google Scholar 

  56. Lim JH, Davis GE, Wang Z, Li V, Wu Y, Rue TC, Storm DR. Zicam-induced damage to mouse and human nasal tissue. PLoS One. 2009;4(10). Oct 30.

    Google Scholar 

  57. Harris AS, Ohlin M, Lethagen S, Nilsson IM. Effect of concentration and volume on nasal bioavailability and biologic response to desmopressin. J Pharm Sci. 1988;77(4):337–9.

    Article  PubMed  CAS  Google Scholar 

  58. Newman SP, Moren F, Clarke SW. Deposition pattern of nasal sprays in man. Rhinology. 1988;26(2):111–20.

    PubMed  CAS  Google Scholar 

  59. Bond SW, Hardy JG, Wilson CG. Deposition and clearance of nasal sprays. Proceedings of the Second European Congress of Biopharmaceutics, Salamanca, (1984), 93–98.

  60. Mohar D, Berger WE, LaForce C, Raphael G, Desai SY, Huang H, Hinkle J. Efficacy and tolerability study of ciclesonide nasal aerosol in patients with perennial allergic rhinitis. Allergy Asthma Proc. 2012;33(1):19–26. January–February.

    Article  PubMed  CAS  Google Scholar 

  61. Cruz MCJ, Koppenhagen F, Blair J, Zeng X. ProAir HFA delivers warmer, lower-impact, longer-duration plumes containing higher fine particle dose than ventolin HFA. JAMPD. 2012;25(2):104–9.

    Google Scholar 

  62. Hallworth OW, Padfield JM. A comparison of regional deposition in a model nose of a drug discharged from metered aerosol and metered-pump nasal delivery systems. J Allergy Clin Immunol. 1986;77:348–53.

    Article  PubMed  CAS  Google Scholar 

  63. Newman SP, Moren F, Clarke SW. The nasal distribution of metered dose inhalers. J Laryngol Otol. 1987;101:127.

    Article  PubMed  CAS  Google Scholar 

  64. Bacona R, Newman S, Rankin L, Pitcairn G, Whiting R. Pulmonary and nasal deposition of ketorolac tromethamine solution (SPRIX) following intranasal administration. Int J Pharm. 2012;431:39–44.

    Article  Google Scholar 

  65. Kesavan J, Bascom R, Laube B, Swift DL. The relationship between particle deposition in the anterior nasal passage and nasal passage characteristics. J Aerosol Med. 2000;13(1):17–23.

    Article  PubMed  CAS  Google Scholar 

  66. Segal RA, Kepler GM, Kimbell JS. Effects of differences in nasal anatomy on airflow distribution: a comparison of four individuals at rest. Ann Biomed Eng. 2008;36(11):1870–82.

    Article  PubMed  Google Scholar 

  67. Soane RJ, Carney AS, Jones NS, Frier M, Perkins AC, Davis SS, Illum L. The effect of the nasal cycle on mucociliary clearance. Clin Otolaryngol. 2001;26:9–15.

    Article  PubMed  CAS  Google Scholar 

  68. Lund VJ. Nasal physiology: neurochemcial receptors, nasal cycle and ciliary action. Allergy Asthma Proc. 1996;17:179–84.

    Article  PubMed  CAS  Google Scholar 

  69. Kesavanathan J, Bascom R, Swift DL. The effect of nasal passage characteristics on particle deposition. J Aerosol Med. 1988;11:27–39.

    Article  Google Scholar 

  70. Chen XB, Lee HP, Fook Hin Chong V, Wang DY. A computational fluid dynamics model for drug delivery in a nasal cavity with inferior turbinate hypertrophy. JAMPD. 2010;23(5):329–38.

    CAS  Google Scholar 

  71. Lee SW, Hardy JG, Wilson CG, Smelt GJC. Nasal sprays and polyps. Nucl Med Commun. 1984;5:697–703.

    Article  Google Scholar 

  72. Sakakura Y, Ukai K, Majima Y, Murai S, Harada T, Miyoshi Y. Nasal mucociliary clearance under various conditions. Acta Otolaryngol. 1983;96:167–73.

    Article  PubMed  CAS  Google Scholar 

  73. Zia H, Dondetti P, Needham TE. Intranasal drug delivery. Clin Res Reg Affairs. 1993;10(2):99–135.

    Article  Google Scholar 

  74. Lunell A, Molander L, Andersson M. Relative bioavailability of nicotine from a nasal spray in infectious rhinitis and after use of a topical decongestant. Eur J Cin Pharmacol. 1995;48:71–5.

    CAS  Google Scholar 

  75. Watts P, Smith A. PecSys: in situ gelling system for optimised nasal drug delivery. Expert Opin Drug Deliv. 2009;6:543–52.

    Article  PubMed  CAS  Google Scholar 

  76. Durand M, Pourchez J, Aubert G, Le Guellec S, Navarro L, Forest V, Rusch P, Cottier M. Impact of acoustic airflow nebulization on intrasinus drug deposition of a human plastinated nasal cast: new insights into the mechanisms involved. Int J Pharm. 2011;421(1):63–71. Dec 12.

    Article  PubMed  CAS  Google Scholar 

  77. Moller W, Saba GK, Haussinger K, Becker S, Keller M, Schuschnig U. Nasally inhaled pulsating aerosols: lung, sinus and nose deposition. Rhinology. 2011;49(3):286–91. Aug.

    PubMed  CAS  Google Scholar 

  78. Murr AH, Smith TL, Hwang PH, Bhattacharyya N, Lanier BJ, Stambaugh JW, Mugglin AS. Safety and efficacy of a novel bioabsorbable, steroid-eluting sinus stent. Int Forum Allergy Rhinol. 2011;1(1):23–32. Jan-Feb.

    Article  PubMed  Google Scholar 

  79. Allen DB. Systemic effects of intranasal steroids: an endocrinologist's perspective. J Allergy Clin Immunol. 2000;106:S179–90.

    Article  PubMed  CAS  Google Scholar 

  80. Benninger MS, Ahmad N, Marple BF. The safety of intranasal steroids. Otolaryngol Head Neck Surg. 2003;129:739–50.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The author would like to thank Professor Illum for the invitation to participate in the special issue on nasal drug delivery. The author does not have any interests that may influence the results and discussion of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie D. Suman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suman, J.D. Current understanding of nasal morphology and physiology as a drug delivery target. Drug Deliv. and Transl. Res. 3, 4–15 (2013). https://doi.org/10.1007/s13346-012-0121-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-012-0121-z

Keywords

Navigation