Skip to main content

Advertisement

Log in

Drug-resistant breast cancer cell line displays cancer stem cell phenotype and responds sensitively to epigenetic drug SAHA

  • Research Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Cancer stem cell (CSC) population in solid human breast tumor is identified by CD44+/CD24 phenotype, characterized by high tumorigenicity, invasiveness, and drug resistance. In this study, we characterized drug-resistant breast cancer cell line-MCF-7/Adr and a number of other breast cancer cell lines using flow cytometry, immunofluorescence, mammosphere formation assay, and migration assay, examining their CSC immunophenotypes, presence of CSC proteins, tumorigenicity in vitro, and migratory rates, respectively. Our results show that MCF-7/Adr cells uniformly display CSC characteristics yet retain low migratory rate. They are also able to self-renew and differentiate under floating culture conditions. Furthermore, MCF-7/Adr is selectively sensitive to epigenetic drug, suberoylanilide hydroxamic acid, losing drug resistance and changes morphology yet retaining CSC immunophenotypes. In conclusion, we show that resistant breast cancer cell line MCF-7/Adr demonstrates uniform CSC-like characteristics and are sensitive to epigenetic drug treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BCSC:

Breast cancer stem cell

SAHA:

Suberoylanilide hydroxamic acid

hMSC:

Human mesenchymal stem cell

ESA:

Epithelial-specific antigen

References

  1. Dick JE. Breast cancer stem cells revealed. Proc Natl Acad Sci U S A. 2003;100(7):3547–9.

    Article  PubMed  CAS  Google Scholar 

  2. Dick JE. Stem cells: Self-renewal writ in blood. Nature. 2003;423(6937):231–3.

    Article  PubMed  CAS  Google Scholar 

  3. Li W, Liu F, Lei T, Xu X, Liu B, Cui L, et al. The clinicopathological significance of CD44+/CD24/low and CD24+ tumor cells in invasive micropapillary carcinoma of the breast. Pathol Res Pract. 2010;206(12):828–34.

    Article  PubMed  CAS  Google Scholar 

  4. Griffin JD, Lowenberg B. Clonogenic cells in acute myeloblastic leukemia. Blood. 1986;68(6):1185–95.

    PubMed  CAS  Google Scholar 

  5. McCulloch EA. Stem cells in normal and leukemic hemopoiesis (Henry Stratton Lecture, 1982). Blood. 1983;62(1):1–13.

    PubMed  CAS  Google Scholar 

  6. Charafe-Jauffret E, Ginestier C, Birnbaum D. Breast cancer stem cells: tools and models to rely on. BMC Cancer. 2009;9:202.

    Article  PubMed  Google Scholar 

  7. Chuthapisith S, Eremin J, El-Sheemey M, Eremin O. Breast cancer chemoresistance: emerging importance of cancer stem cells. Surg Oncol. 2010;19(1):27–32.

    Article  PubMed  Google Scholar 

  8. Dontu G. Breast cancer stem cell markers—the rocky road to clinical applications. Breast Cancer Res. 2008;10(5):110.

    Article  PubMed  Google Scholar 

  9. Kakarala M, Wicha MS. Implications of the cancer stem-cell hypothesis for breast cancer prevention and therapy. J Clin Oncol. 2008;26(17):2813–20.

    Article  PubMed  Google Scholar 

  10. Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu MF, et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst. 2008;100(9):672–9.

    Article  PubMed  CAS  Google Scholar 

  11. Morrison BJ, Schmidt CW, Lakhani SR, Reynolds BA, Lopez JA. Breast cancer stem cells: implications for therapy of breast cancer. Breast Cancer Res. 2008;10(4):210.

    Article  PubMed  Google Scholar 

  12. Phillips TM, McBride WH, Pajonk F. The response of CD24(−/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst. 2006;98(24):1777–85.

    Article  PubMed  Google Scholar 

  13. Abraham BK, Fritz P, McClellan M, Hauptvogel P, Athelogou M, Brauch H. Prevalence of CD44+/CD24/low cells in breast cancer may not be associated with clinical outcome but may favor distant metastasis. Clin Cancer Res. 2005;11(3):1154–9.

    PubMed  CAS  Google Scholar 

  14. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100(7):3983–8.

    Article  PubMed  CAS  Google Scholar 

  15. Bauerschmitz GJ, Ranki T, Kangasniemi L, Ribacka C, Eriksson M, Porten M, et al. Tissue-specific promoters active in CD44+CD24/low breast cancer cells. Cancer Res. 2008;68(14):5533–9.

    Article  PubMed  CAS  Google Scholar 

  16. Hill RP, Perris R. “Destemming” cancer stem cells. J Natl Cancer Inst. 2007;99(19):1435–40.

    Article  PubMed  CAS  Google Scholar 

  17. Kelly PN, Dakic A, Adams JM, Nutt SL, Strasser A. Tumor growth need not be driven by rare cancer stem cells. Science. 2007;317(5836):337.

    Article  PubMed  CAS  Google Scholar 

  18. Snyder EL, Bailey D, Shipitsin M, Polyak K, Loda M. Identification of CD44v6(+)/CD24− breast carcinoma cells in primary human tumors by quantum dot-conjugated antibodies. Lab Invest. 2009;89(8):857–66.

    Article  PubMed  CAS  Google Scholar 

  19. Honeth G, Bendahl PO, Ringner M, Saal LH, Gruvberger-Saal SK, Lovgren K, et al. The CD44+/CD24− phenotype is enriched in basal-like breast tumors. Breast Cancer Res. 2008;10(3):R53.

    Article  PubMed  Google Scholar 

  20. Mylona E, Giannopoulou I, Fasomytakis E, Nomikos A, Magkou C, Bakarakos P, et al. The clinicopathologic and prognostic significance of CD44+/CD24(−/low) and CD44-/CD24+ tumor cells in invasive breast carcinomas. Hum Pathol. 2008;39(7):1096–102.

    Article  PubMed  CAS  Google Scholar 

  21. Baumann P, Cremers N, Kroese F, Orend G, Chiquet-Ehrismann R, Uede T, et al. CD24 expression causes the acquisition of multiple cellular properties associated with tumor growth and metastasis. Cancer Res. 2005;65(23):10783–93.

    Article  PubMed  CAS  Google Scholar 

  22. Osta WA, Chen Y, Mikhitarian K, Mitas M, Salem M, Hannun YA, et al. EpCAM is overexpressed in breast cancer and is a potential target for breast cancer gene therapy. Cancer Res. 2004;64(16):5818–24.

    Article  PubMed  CAS  Google Scholar 

  23. An Z, Gluck CB, Choy ML, Kaufman LJ. Suberoylanilide hydroxamic acid limits migration and invasion of glioma cells in two and three dimensional culture. Cancer Lett. 2010;292(2):215–27.

    Article  PubMed  CAS  Google Scholar 

  24. Blick T, Widodo E, Hugo H, Waltham M, Lenburg ME, Neve RM, et al. Epithelial mesenchymal transition traits in human breast cancer cell lines. Clin Exp Metastasis. 2008;25(6):629–42.

    Article  PubMed  CAS  Google Scholar 

  25. Iseri OD, Kars MD, Arpaci F, Atalay C, Pak I, Gunduz U. Drug resistant MCF-7 cells exhibit epithelial-mesenchymal transition gene expression pattern. Biomed Pharmacother. 2011;65(1):40–5.

    Article  PubMed  CAS  Google Scholar 

  26. Arumugam T, Ramachandran V, Fournier KF, Wang H, Marquis L, Abbruzzese JL, et al. Epithelial to mesenchymal transition contributes to drug resistance in pancreatic cancer. Cancer Res. 2009;69(14):5820–8.

    Article  PubMed  CAS  Google Scholar 

  27. Sheridan C, Kishimoto H, Fuchs RK, Mehrotra S, Bhat-Nakshatri P, Turner CH, et al. CD44+/CD24− breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Res. 2006;8(5):R59.

    Article  PubMed  Google Scholar 

  28. Fillmore CM, Kuperwasser C. Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res. 2008;10(2):R25.

    Article  PubMed  Google Scholar 

  29. Bass AJ, Watanabe H, Mermel CH, Yu S, Perner S, Verhaak RG, et al. SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nat Genet. 2009;41(11):1238–42.

    Article  PubMed  CAS  Google Scholar 

  30. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72.

    Article  PubMed  CAS  Google Scholar 

  31. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.

    Article  PubMed  CAS  Google Scholar 

  32. Guttilla IK, Phoenix KN, Hong X, Tirnauer JS, Claffey KP, White BA. Prolonged mammosphere culture of MCF-7 cells induces an EMT and repression of the estrogen receptor by microRNAs. Breast Cancer Res Treat. 2012;132(1):75–85.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was funded by grant R01 CA149359-03 (to VL) from the National Cancer Institute of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinod Labhasetwar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, S., Labhasetwar, V. Drug-resistant breast cancer cell line displays cancer stem cell phenotype and responds sensitively to epigenetic drug SAHA. Drug Deliv. and Transl. Res. 3, 183–194 (2013). https://doi.org/10.1007/s13346-012-0113-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-012-0113-z

Keywords

Navigation