Skip to main content

Advertisement

Log in

Image-guided drug delivery in lung cancer

  • Review Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Lung cancer continues to be the number one cause of cancer-related deaths in the USA. Early identification of the disease, availability of more effective drugs, and improved delivery of such drugs specifically to cancer cells are needed to decrease lung cancer-associated morbidity and mortality. The concept of image-guided drug delivery (IGDD), which envisions the utilization of imaging techniques for quantitative assessments of tumor-targeted drug delivery and therapeutic response, has the potential to make a significant impact in lung cancer. While the anatomic and physiological features of the lung pose distinct problems for imaging drug delivery, several new techniques are emerging that have the potential to overcome these problems. X-ray is a routinely used technique for diagnosing lung cancer; however, positron emission tomography (PET) and magnetic resonance imaging (MRI) are complementary approaches. PET- and MRI-based techniques (such as functional MRI) offer the possibility of imaging the delivery of specific molecules to cancer tissues in the lung. This paper reviews fundamentals of imaging with an emphasis on MRI and to some extent PET, since it will be argued that these techniques are the most promising for development in IGDD for lung cancer. Finally, key literature contributions will be highlighted, which exemplify the current successes in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tandon P, Farahani K. NCI image-guided drug delivery summit. Cancer Res. 2011;71(2):314–7.

    Article  PubMed  CAS  Google Scholar 

  2. American Cancer Society (cancer.org), 2009.

  3. Jemal A, et al. Cancer statistics, 2008. CA Cancer J Clin. 2008;58(2):71–96.

    Article  PubMed  Google Scholar 

  4. Vineis P, et al. Lung cancers attributable to environmental tobacco smoke and air pollution in non-smokers in different European countries: a prospective study. Environ Health. 2007;6:7.

    Article  PubMed  Google Scholar 

  5. Yang L, et al. Estimates of cancer incidence in China for 2000 and projections for 2005. Cancer Epidemiol Biomarkers Prev. 2005;14(1):243–50.

    PubMed  Google Scholar 

  6. Lynch TJ, et al. Early stage lung cancer—new approaches to evaluation and treatment: conference summary statement. Clin Cancer Res. 2005;11(13 Pt 2):4981s–3s.

    Article  PubMed  Google Scholar 

  7. Franklin, WA. Molecular and cellular pathology of lung cancer. In: Pass HL, Carbone DE, Johnson DH, Minna JD, Turrisi AT, editors. Lung cancer: principles and practice. Philadelphia: Lippincott Williams & Wilkins; 2005. pp. 231–260.

  8. National Comprehensive Cancer Network (www.nccn.org), 2009.

  9. Eisenhauer EA et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2): 228–47.

    Google Scholar 

  10. Manser RL et al. Screening for lung cancer. Cochrane Database Syst Rev. 2001:(3)CD001991.

  11. Humphrey LL, Teutsch S, Johnson M. Lung cancer screening with sputum cytologic examination, chest radiography, and computed tomography: an update for the U.S. Preventive Services Task Force. Ann Intern Med. 2004;140(9):740–53.

    PubMed  Google Scholar 

  12. Sobue T, et al. Screening for lung cancer with low-dose helical computed tomography: Anti-Lung Cancer Association Project. J Clin Oncol. 2002;20(4):911–20.

    Article  PubMed  Google Scholar 

  13. Wu NY, et al. Magnetic resonance imaging for lung cancer detection: experience in a population of more than 10,000 healthy individuals. BMC Cancer. 2011;11:242.

    Article  PubMed  Google Scholar 

  14. Gagnadoux F, et al. Aerosol delivery of chemotherapy in an orthotopic model of lung cancer. Eur Respir J. 2005;26(4):657–61.

    Article  PubMed  CAS  Google Scholar 

  15. Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA. Non-small cell lung cancer: epidemiology, risk factors, treatment and survivorship. Mayo Clin Proc. 2008;83(5):584–94.

    PubMed  Google Scholar 

  16. Commission on Cancer. National cancer data base, 2006. Chicago: American College of Surgeons.

  17. Debrix I et al. [Anticancer chemotherapy in the elderly: a review of the literature]. Bull Cancer, 2008. 95 FMC Onco: p. F37–43.

  18. Mulshine JL, et al. Lung cancer evolution to preinvasive management. Clin Chest Med. 2002;23(1):37–48.

    Article  PubMed  Google Scholar 

  19. Chhatwani L, Cabebe E, Wakelee HA. Adjuvant treatment of resected lung cancer. Proc Am Thorac Soc. 2009;6(2):194–200.

    Article  PubMed  CAS  Google Scholar 

  20. Wiedmann TS, Wattenberg LW. Chemoprevention of cancer of the respiratory tract by agents delivered by aerosol: applications to glucocorticoids and 5-fluorouracil. Cancer Chemoprevention. 2004;1:153–67.

    CAS  Google Scholar 

  21. Chai H, Brown RE. Field effect in cancer—an update. Ann Clin Lab Sci. 2009;39(4):331–7.

    PubMed  CAS  Google Scholar 

  22. Slaughter DP, Southwick HW, Smejkal W. Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin. Cancer. 1953;6(5):963–8.

    Article  PubMed  CAS  Google Scholar 

  23. Kherlopian A, et al. A review of imaging techniques for systems biology. BMC Syst Biol. 2008;2(1):74.

    Article  PubMed  Google Scholar 

  24. Gore JC, et al. Magnetic resonance in the era of molecular imaging of cancer. Magn Reson Imaging. 2011;29(5):587–600.

    Article  PubMed  CAS  Google Scholar 

  25. Deppen S, et al. Accuracy of FDG-PET to diagnose lung cancer in a region of endemic granulomatous disease. Ann Thorac Surg. 2011;92(2):428–33.

    Article  PubMed  Google Scholar 

  26. Wahl RL, et al. Staging of mediastinal non-small cell lung cancer with FDG PET, CT, and fusion images: preliminary prospective evaluation. Radiology. 1994;191(2):371–7.

    PubMed  CAS  Google Scholar 

  27. Yaghoubi SS, Berger F, Gambhir SS. Studying the biodistribution of positron emission tomography reporter probes in mice. Nat Protocols. 2007;2(7):1752–5.

    Article  CAS  Google Scholar 

  28. Agool A, et al. Effect of radiotherapy and chemotherapy on bone marrow activity: a 18 F–FLT–PET study. Nucl Med Commun. 2011;32(1):17–22. doi:10.1097/MNM.0b013e328340798c.

    Article  PubMed  CAS  Google Scholar 

  29. Kim SK, et al. F-18 fluorodeoxyglucose and F-18 fluorothymidine positron emission tomography/computed tomography imaging in a case of neurosarcoidosis. Clin Nucl Med. 2010;35(2):67–70.

    Article  PubMed  Google Scholar 

  30. Shields AF, et al. Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med. 1998;4(11):1334–6.

    Article  PubMed  CAS  Google Scholar 

  31. Yeh DW, et al. Mediastinal nodes in patients with non-small cell lung cancer: MRI findings with PET/CT and pathologic correlation. AJR Am J Roentgenol. 2009;193(3):813–21.

    Article  PubMed  Google Scholar 

  32. Bloch F. Nuclear Induction. Phys Rev. 1946;70:460–73.

    Article  CAS  Google Scholar 

  33. Corot C, et al. Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev. 2006;58(14):1471–504.

    Article  PubMed  CAS  Google Scholar 

  34. Zhou R, et al. SWIFT detection of SPIO-labeled stem cells grafted in the myocardium. Magn Reson Med. 2010;63(5):1154–61.

    Article  PubMed  Google Scholar 

  35. Schneider E, et al. Magnetic resonance spectroscopy for measuring the biodistribution and in situ in vivo pharmacokinetics of fluorinated compounds: validation using an investigation of liver and heart disposition of tecastemizole. J Clin Pharm Ther. 2006;31(3):261–73.

    Article  PubMed  CAS  Google Scholar 

  36. Tran TD, et al. Clinical applications of perfluorocarbon nanoparticles for molecular imaging and targeted therapeutics. Int J Nanomedicine. 2007;2(4):515–26.

    PubMed  CAS  Google Scholar 

  37. Kuethe DO, Adolphi NL, Fukushima E. Short data-acquisition times improve projection images of lung tissue. Magn Reson Med. 2007;57(6):1058–64.

    Article  PubMed  Google Scholar 

  38. Idiyatullin D, et al. Fast and quiet MRI using a swept radiofrequency. J Magn Reson. 2006;181(2):342–9.

    Article  PubMed  CAS  Google Scholar 

  39. Dugas JP, et al. Hyperpolarized 3He MRI of mouse lung. Magn Reson Med. 2004;52(6):1310–7.

    Article  PubMed  CAS  Google Scholar 

  40. Bankson JA, et al. Echo-planar imaging for MRI evaluation of intrathoracic tumors in murine models of lung cancer. J Magn Reson Imaging. 2008;27(1):57–62.

    Article  PubMed  Google Scholar 

  41. Garbow JR, Zhang Z, You M. Detection of primary lung tumors in rodents by magnetic resonance imaging. Cancer Res. 2004;64(8):2740–2.

    Article  PubMed  CAS  Google Scholar 

  42. Wolf G, et al. Diffusion-weighted MRI for tumour volume delineation: comparison with morphological MRI. J Med Imaging Radiat Oncol. 2010;54(3):194–201.

    Article  PubMed  CAS  Google Scholar 

  43. Yuan Z, et al. Folate-poly-L-lysine-Gd-DTPA as MR contrast agent for tumor imaging via folate receptor-targeted delivery. Zhonghua yi xue za zhi. 2007;87(10):673–8.

    PubMed  CAS  Google Scholar 

  44. Romaneehsen B, et al. Cryotherapy of malignant tumors: studies with MRI in an animal experiment and comparison with morphological changes. RoFo: Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin. 2001;173(7):632–8.

    Article  PubMed  CAS  Google Scholar 

  45. Zhou X, et al. Magnetic resonance imaging of the response of a mouse model of non-small cell lung cancer to tyrosine kinase inhibitor treatment. Comp Med. 2008;58(3):276–81.

    PubMed  CAS  Google Scholar 

  46. Roa WH, et al. Inhalable nanoparticles, a non-invasive approach to treat lung cancer in a mouse model. J Control Release. 2011;150(1):49–55.

    Article  PubMed  CAS  Google Scholar 

  47. Blanco RT, et al. Interventional and intraoperative MRI at low field scanner—a review. Eur J Radiol. 2005;56(2):130–42.

    Article  PubMed  Google Scholar 

  48. Hersman FW, et al. Large production system for hyperpolarized 129Xe for human lung imaging studies. Acad Radiol. 2008;15(6):683–92.

    Article  PubMed  Google Scholar 

  49. Garbow JR, Zhang Z, You M. Detection of primary lung tumors in rodents by magnetic resonance imaging. Cancer Res. 2004;64(8):2740–2.

    Article  PubMed  CAS  Google Scholar 

  50. Hayashi N, et al. Utilization of low-field MR scanners. Magn Reson Med Sci. 2004;3(1):27–38.

    Article  PubMed  Google Scholar 

  51. Laurent F, Montaudon M, Corneloup O. CT and MRI of lung cancer. Respiration. 2006;73(2):133–42.

    PubMed  Google Scholar 

  52. Langley J, et al. Quantification of SPIO nanoparticles in vivo using the finite perturber method. Magn Reson Med. 2011;65(5):1461–9.

    Article  PubMed  CAS  Google Scholar 

  53. Gultepe E, et al. Monitoring of magnetic targeting to tumor vasculature through MRI and biodistribution. Nanomedicine. 2010;5(8):1173–82.

    Article  PubMed  CAS  Google Scholar 

  54. Guthi JS, et al. MRI-visible micellar nanomedicine for targeted drug delivery to lung cancer cells. Mol Pharm. 2009;7(1):32–40.

    Article  Google Scholar 

  55. Eichhorn ME, et al. Cationic lipid complexed camptothecin (EndoTAG®-2) improves antitumoral efficacy by tumor vascular targeting. Cancer Biol Ther. 2007;6(6):920–9.

    Article  PubMed  CAS  Google Scholar 

  56. Gianella A, et al. Multifunctional nanoemulsion platform for imaging guided therapy evaluated in experimental cancer. ACS Nano. 2011;5(6):4422–33.

    Article  PubMed  CAS  Google Scholar 

  57. Kaira K, et al. 18 F-FMT uptake seen within primary cancer on PET helps predict outcome of non-small cell lung cancer. J Nucl Med. 2009;50(11):1770–6.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Funding support from the Department of Defense, U.S. Army Medical Research and Material Command (W81XWH-10-1-0707) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayanth Panyam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiedmann, T.S., Sadhukha, T., Hammer, B.E. et al. Image-guided drug delivery in lung cancer. Drug Deliv. and Transl. Res. 2, 31–44 (2012). https://doi.org/10.1007/s13346-011-0053-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-011-0053-z

Keywords

Navigation