Skip to main content
Log in

A modification to vertical distribution of tidal flow Reynolds stress in shallow Sea

  • Published:
China Ocean Engineering Aims and scope Submit manuscript

Abstract

Tidal flow is a periodic movement of unsteady and non-uniform, which has acceleration and deceleration process obviously, especially in coastal shallow waters. Many researches show that vertical distribution of tidal flow Reynolds stress deviated from linear distribution. The parabolic distribution of the tidal flow Reynolds stress was proposed by Song et al. (2009). Although the model fills better with field observations and indoor experimental data, it has the lower truncated series expansion of tidal flow Reynolds stress, and the description of the distribution is not very comprehensive. By introducing the motion equation of tidal flow and improving the parabolic distribution established by Song et al. (2009), the cubic distribution of the tidal flow Reynolds stress is proposed. The cubic distribution is verified well by field data (Bowden and Fairbairn, 1952; Bowden et al., 1959; Rippeth et al., 2002) and experimental data (Anwar and Atkins, 1980), is consistent with the numerical model results of Kuo et al. (1996), and is compared with the parabolic distribution of the tidal flow Reynolds stress. It is shown that this cubic distribution is not only better than the parabolic distribution, but also can better reflect the basic features of Reynolds stress deviating from linear distribution downward with the tidal flow acceleration and upward with the tidal flow deceleration, for the foundation of further study on the velocity profile of tidal flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Afzalimehr, H. and Anctil, F., 2000. Accelerating shear velocity in gravel-bed channels, Hydrolog. Sci., 45(1): 113–124.

    Article  Google Scholar 

  • Anwar, H. O. and Atkins, R., 1980. Turbulence measurements in simulated tidal flow, J. Hydraul. Div., ASCE, 106(8): 1273–1289.

    Google Scholar 

  • Bowden, K. F. and Fairbairn, L. A., 1952. A determination of frictional forces in a tidal current, Pro. Roy. Soc., 214(2228): 371–392.

    Article  Google Scholar 

  • Bowden, K. F., Fairbairn, L. A. and Huges, P., 1959. The distributions of shearing stresses in a tidal current, Geophysical Journal of the Royal Astronomical Society, 2(4): 288–305.

    Article  MATH  Google Scholar 

  • Burchard, H., Craig, P. D., Gemmrich, J. R., van Haren, H., Mathieu, P-P., Markus Meier, H. E., Smith, W. A. M. N., Prandke, H., Rippeth, T. P., Skyllingstad, E. D., Smyth, W. D., Welsh, D. J. S. and Wijesekera, H. W., 2008. Observational and numerical modeling methods for quantifying coastal ocean turbulence and mixing, Prog. Oceanogr., 76(4): 399–442.

    Article  Google Scholar 

  • Chen, Z. Y., 1964. A pattern of the vertical velocity profile of tidal current in shallow waters, Oceanologia et Limnologia Sinica, 6(3): 252–258. (in Chinese)

    Google Scholar 

  • Deng, L. M., Ye, M. and Wang, D. Z., 2001. Observation and analysis on large-scale turbulent structure and Reynolds stress computation in natural river, Journal of Hydrodynamics (Ser A), 16(2): 187–194. (in Chinese)

    Google Scholar 

  • Ghosh, S. N. and Roy, N., 1970. Boundary shear stress distribution in open channel flows, J. Hydraul. Div., ASCE, 96(HY4): 839–851.

    Google Scholar 

  • Kironoto, B. A. and Graf, W. H., 1995. Turbulence characteristics in rough non-uniform open-channel flow, in: Proceedings of the Institution of Civil Engineers-Water Maritime and Energy, 112(4): 336–348.

    Article  Google Scholar 

  • Kuo, A. Y., Shen, J. and Hamrick, J. M., 1996. Effect of acceleration on bottom shear stress in tidal estuaries, J. Waterw. Port Coast. Ocean Eng., ASCE, 122(2): 75–83.

    Article  Google Scholar 

  • Li, H. L., 1992. Study on the vertical velocity distribution of tidy currents and the bed resistance, Journal of Hydraulic Engineering, (11): 57–62. (in Chinese)

  • Lu, J. Y., Xu, H. T. and Yao, S. M., 2005. Turbulent characteristics of flow in river, Journal of Hydraulic Engineering, 36(9): 1029–1034. (in Chinese)

    Google Scholar 

  • Lyn, D. A., 1993. Turbulence measurements in open-channel flows over artificial bed forms, J. Hydraul. Eng., ASCE, 119(3): 306–326.

    Article  Google Scholar 

  • Nezu, I. and Rodi, W., 1986. Open channel flow measurements with a laser Doppler anemometer, J. Hydraul. Eng., ASCE, 112(5): 335–355.

    Article  Google Scholar 

  • Nikora, V. and Goring, D., 2000. Flow turbulence over fixed and weakly mobile gravel beds, J. Hydraul. Eng., ASCE, 126(9): 679–690.

    Article  Google Scholar 

  • Poggi, D., Porporato, A. and Ridolfi, L., 2002. An experimental contribution to near-wall measurement by means of a special laser Doppler anemometry technique, Exp. Fluids, 32(3): 366–375.

    Article  Google Scholar 

  • Rajartnam, N. and Muralidhar, D., 1969. Boundary shear stress distribution in rectangular open channels, La Houille Blanche, 6, 603–609.

    Article  Google Scholar 

  • Rippeth, T. P., Williams, E. and Simpson, J. H., 2002. Reynolds stress and turbulent energy production in a tidal channel, J. Phys. Oceanogr., 32(4): 1242–1251.

    Article  Google Scholar 

  • Song, T. and Graf, W. H., 1996. Velocity and turbulence distribution of hysteresis in rating curves, J. Hydraul. Eng., ASCE, 122(3): 141–154.

    Article  Google Scholar 

  • Song, Z. Y., Yan, Y. X., Hao, J. L., Kong, J. and Zhang, H. G., 2006. Study on the log-linear velocity profile of near-bed tidal current in estuarine and coastal waters, China Ocean Eng., 20(4): 573–584.

    Google Scholar 

  • Song, Z. Y., Ni, Z. H. and Lv, G. N., 2009. Vertical distribution of tidal flow Reynolds stress in shallow water, China Ocean Eng., 23(2): 267–275.

    Google Scholar 

  • Stacey, M. T., Monismith, S. G. and Burau, J. R., 1999. Measurements of Reynolds stress profiles in unstratified tidal flow, J. Geophys. Res., 104(C5): 10933–10949.

    Article  Google Scholar 

  • Tang, Y. X., 1990. An outline of the study on the vertical structure of tide current, Journal of Oceanography of Huanghai and Bohai Seas, 8(4): 59–69. (in Chinese)

    Google Scholar 

  • Williams, E. and Simpson, J. H., 2004. Uncertainties in estimates of Reynolds stress and TKE production rate using the ADCP variance method, Journal of Atmospheric and Oceanic Technology, 21(2): 347–357.

    Article  Google Scholar 

  • Zhu, C. J., Zhang, J. L., Jiang, E. H., Hao, Z. C., Li, J. H. and Zhao, L. J., 2007. Study on the vertical velocity distribution of open channel flow contained sands, Journal of Yangtze River Scientific Research Institute, 24(5): 1–3. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-hui Ni  (倪志辉).

Additional information

The study was financially supported by the National Natural Science Foundation of China (Grant No. 41076008), the Science and Technology Project of Chongqing Education Committee (Grant No. KJ110409 and No. KJ111501), the National Engineering Research Center for Inland Waterway Regulation Program (Grant No. SLK2012A02), and the National Key Technology R&D Program (Grant No. 2012BAB05B03).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ni, Zh., Song, Zy., Zhang, Xj. et al. A modification to vertical distribution of tidal flow Reynolds stress in shallow Sea. China Ocean Eng 26, 431–442 (2012). https://doi.org/10.1007/s13344-012-0032-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13344-012-0032-2

Key words

Navigation