Skip to main content

Advertisement

Log in

The association of cardiac function, structure, and glycemic control in patients with old myocardial infarction: a study using cardiac magnetic resonance

Diabetology International Aims and scope Submit manuscript

Abstract

Purpose

Cardiac magnetic resonance imaging (MRI) can provide noninvasive and accurate quantitative assessment of the left ventricular (LV) structure and function. We investigated the association between LV MRI measures and glycemic control in patients with old myocardial infarction (OMI).

Materials and methods

The study population consisted of 51 OMI patients. By using a 1.5-T MRI scanner, we acquired cine MRI and late gadolinium-enhanced MRI. We calculated the LV volume, LV mass (LVM), LV function and percentage of infarcted myocardial volume over the total LV myocardial volume (%LGE). Patients were allocated to three groups: normal glucose tolerance (NGT), n = 9; impaired glucose tolerance (IGT)/impaired fasting glucose (IFG), n = 15; diabetes mellitus (DM), n = 27; respectively.

Results

LVM was significantly increased in the DM group compared with the NGT group (p = 0.002). Multiple linear regression analysis demonstrated that HbA1c levels were significantly and independently associated with LVM after adjustment for risk factors of congestive heart failure and  %LGE (p = 0.009). The LV ejection fraction (EF) was not associated with HbA1c levels.

Conclusion

Our findings suggest that glucose tolerance in patients with OMI may be associated with LV wall thickness. LVM calculation by cine MRI might be useful for longitudinal follow-up of the effect of diabetic treatment on OMI patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  1. Gerstein HC, Gerstein HC, Miller ME, et al. Effects of intensive glucose lowering in type 2 diabetes. N Eng J Med. 2008;358:2545–59.

    Article  CAS  Google Scholar 

  2. Patel A, MacMahon S, Chalmers J, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Eng J Med. 2008;358:2560–72.

    Article  CAS  Google Scholar 

  3. Duckworth W, Abraira C, Moritz T, et al. Glucose control and vascular complications in veterans with type 2 diabetes. N Eng J Med. 2009;360:129–39.

    Article  CAS  Google Scholar 

  4. Dhingra R, Vasan RS. Diabetes and the risk of heart failure. Heart Fail Clin. 2012;8:125–33.

    Article  PubMed  Google Scholar 

  5. Abbott RD, Donahue RP, Kannel WB, Wilson PW. The impact of diabetes on survival following MI in men versus women: the Framingham study. JAMA. 1988;260:3456–60.

    Article  CAS  PubMed  Google Scholar 

  6. Mak KH, Topol EJ. Emerging concepts in the management of acute MI in patients with diabetes mellitus. J Am Coll Cardiol. 2000;35:563–8.

    Article  CAS  PubMed  Google Scholar 

  7. Dandamudi S, Slusser J, Mahoney DW, Redfield MM, Rodeheffer RJ, Chen HH. The prevalence of diabetic cardiomyopathy: a population-based study in Olmsted County, Minnesota. J Card Fail. 2014;20:304–9.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Grothues F, Smith GC, Moon JC, et al. Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy. Am J Cardiol. 2002;90:29–34.

    Article  PubMed  Google Scholar 

  9. Wagner A, Mahrholdt H, Holly TA, et al. Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. Lancet. 2003;361:374–9.

    Article  PubMed  Google Scholar 

  10. Bülow H, Klein C, Kuehn I, et al. Cardiac magnetic resonance imaging: long term reproducibility of the late enhancement signal in patients with chronic coronary artery disease. Heart. 2005;91:1158–63.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zemrak F, Petersen SE. Late gadolinium enhancement CMR predicts adverse cardiovascular outcomes and mortality in patients with coronary artery disease: systematic review and meta-analysis. Prog Cardiovasc Dis. 2011;54:215–29.

    Article  PubMed  Google Scholar 

  12. Seino Yutaka, Nanjo Kishio, Tajima Naoko, et al. Report of the committee on the classification and diagnostic criteria of diabetes mellitus. J Diabetes Invest. 2010;1:212–28.

    Article  Google Scholar 

  13. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2012;35(Supple 1):S64–71.

    Article  Google Scholar 

  14. Semelka RC, Tomei E, Wagner S, et al. Normal left ventricular dimensions and function: interstudy reproducibility of measurements with cine MR imaging. Radiology. 1990;174:763–8.

    Article  CAS  PubMed  Google Scholar 

  15. Yoon YE, Kitagawa K, Kato S, et al. Prognostic significance of unrecognized myocardial infarction detected with MR imaging in patients with impaired fasting glucose compared with those with diabetes. Radiology. 2012;262:807–15.

    Article  PubMed  Google Scholar 

  16. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Eng J Med. 1990;322:1561–6.

    Article  CAS  Google Scholar 

  17. Westerhout CM, Lauer MS, James S, Fu Y, Wallentin L, Armstrong PW. Electrocardiographic left ventricular hypertrophy in GUSTO IV ACS: an important risk marker of mortality in women. Eur Heart J. 2007;28:2064–9.

    Article  PubMed  Google Scholar 

  18. Taylor TR, Kamarck TW, Dianzumba S. Cardiovascular reactivity and left ventricular mass: an integrative review. Ann Behav Med. 2003;26:182–93.

    Article  PubMed  Google Scholar 

  19. Gosse P. Left ventricular hypertrophy the problem and possible solutions. J Int Med Res. 2005;33(S1):3A–11A.

    Article  PubMed  Google Scholar 

  20. Turakhia MP, Schiller NB, Whooley MA. Prognostic significance of increased left ventricular mass index to mortality and sudden death in patients with stable coronary heart disease (from the Heart and Soul Study). Am J Cardiol. 2008;102:1131–5.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lindman BR, Arnold SV, Madrazo JA, et al. The adverse impact of diabetes mellitus on left ventricular remodeling and function in patients with severe aortic stenosis. Circ Heart Fail. 2011;4:286–92.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Devereux RB, Roman MJ, Paranicas M. Impact of diabetes on cardiac structure and function the strong heart study. Circulation. 2000;101:2271–6.

    Article  CAS  PubMed  Google Scholar 

  23. Boudina S, Abel ED. Diabetic cardiomyopathy revisited. Circulation. 2007;115:3213–23.

    Article  PubMed  Google Scholar 

  24. Fang ZY, Prins JB, Marwick TH. Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocr Rev. 2004;25:543–67.

    Article  CAS  PubMed  Google Scholar 

  25. Greer JJ, Ware DP, Lefer DJ. Myocardial infarction and heart failure in the db/db diabetic mouse. Am J Physiol Heart Circ Physiol. 2006;290:H146–53.

    Article  CAS  PubMed  Google Scholar 

  26. Shah AM, Hung CL, Shin SH, et al. Cardiac structure and function, remodeling, and clinical outcomes among patients with diabetes after myocardial infarction complicated by left ventricular systolic dysfunction, heart failure, or both. Am Heart J. 2011;162:685–91.

    Article  PubMed  Google Scholar 

  27. Howangyin KY, Silvestre JS. Diabetes mellitus and ischemic diseases: molecular mechanisms of vascular repair dysfunction. Arterioscler Thromb Vasc Biol. 2014;34:1126–35.

    Article  CAS  PubMed  Google Scholar 

  28. Cuspidi C, Rescaldani M, Sala C, Grassi G. Left-ventricular hypertrophy and obesity: a systematic review and meta-analysis of echocardiographic studies. J Hypertens. 2014;32(1):16–25.

    Article  CAS  PubMed  Google Scholar 

  29. Małek ŁA, Spiewak M, Kłopotowski M, et al. Influence of left ventricular hypertrophy on infarct size and left ventricular ejection fraction in ST-elevation myocardial infarction. Eur J Radiol. 2012;81(3):e177–81.

    Article  PubMed  Google Scholar 

  30. Melchior T, Gadsbøll N, Hildebrandt P, Køber L, Torp-Pedersen C. Clinical characteristics, left and right ventricular ejection fraction, and long-term prognosis in patients with non-insulin-dependent diabetes surviving an acute myocardial infarction. Diabet Med. 1996;13:450–6.

    Article  CAS  PubMed  Google Scholar 

  31. Palmieri V, Bella JN, Arnett DK, et al. Effect of type 2 diabetes mellitus on left ventricular geometry and systolic function in hypertensive subjects: hypertension Genetic Epidemiology Network (HyperGEN) study. Circulation. 2001;103:102–7.

    Article  CAS  PubMed  Google Scholar 

  32. Goldweit RS, Borer JS, Jovanovic LG, et al. Relation of hemoglobin A1 and blood glucose to cardiac function in diabetes mellitus. Am J Cardiol. 1985;56:642–6.

    Article  CAS  PubMed  Google Scholar 

  33. Lamas GA. Left ventricular hypertrophy in post - myocardial infarction left ventricular remodeling and in hypertension; similarities and contrasts. Eur Heart J. 1993;14:15–21.

    Article  PubMed  Google Scholar 

  34. Paulus WJ, Tschope C, Sanderson JE, et al. How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology. Eur Heart J. 2007;28(20):2539–50.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Statistical analyses in this study were supported by Kentaro Sakamaki at Biostatistics and Epidemiology, Yokohama City University Medical Center, Yokohama, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuo Terauchi.

Ethics declarations

Human rights statement and informed consent

All procedures followed were in accordance with the ethical standards of the responsible committees on human experimentation (institutional and national) and with the Helsinki Declaration of 1964 and later versions. Informed consent is not necesssarily required for observational studies using existing data.

Conflict of interest

Y. T. has received lecture fees from MSD, Ono Yakuhin,Boehringer Ingelheim, Takeda, Tanabe Mitsubisi, Daiichi-Sankyo, Sanwa Kagaku Kenkyusho, Novo Nordisk, Eli Lilly, Sanofi, Dainippon-Sumitomo, Shionogi, Bayer Yakuhin, Astellas, AstraZeneca and Taisho Toyama as well as scholarship grants from MSD, Ono Yakuhin, Boehringer Ingelheim, Takeda, Tanabe Mitsubisi, Daiichi-Sankyo, Sanwa Kagaku Kenkyusho, Novo Nordisk, Eli Lilly, Sanofi, Dainippon-Sumitomo, Shionogi, Bayer Yakuhin, Astellas, AstraZeneca and Taisho Toyama. The other authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamai, J., Nakamura, A., Kato, S. et al. The association of cardiac function, structure, and glycemic control in patients with old myocardial infarction: a study using cardiac magnetic resonance. Diabetol Int 8, 23–29 (2017). https://doi.org/10.1007/s13340-016-0271-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13340-016-0271-1

Keywords

Navigation