Skip to main content
Log in

A dispersive model for undular bores

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

In this article, consideration is given to weak bores in free-surface flows. The energy loss in the shallow-water theory for an undular bore is thought to be due to upstream oscillations that carry away the energy lost at the front of the bore. Using a higher-order dispersive model equation, this expectation is confirmed through a quantitative study which shows that there is no energy loss if dispersion is accounted for.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alazman, A.A., Albert, J.P., Bona, J.L., Chen, M., Wu, J.: Comparison between the BBM equation and a Boussinesq system. Adv. Differ. Equ. 11, 121–166 (2006)

    MathSciNet  MATH  Google Scholar 

  2. Albert, J.P.: Concentration compactness and the stability of solitary-wave solutions to nonlocal equations. In: Applied Analysis (Baton Rouge, LA, 1996), pp. 1–29. Contemp. Math. vol. 221. American Mathematical Society, Providence (1996)

  3. Ali, A., Kalisch, H.: Energy balance for undular bores. C. R. Mecanique 338, 67–70 (2010)

    Article  MATH  Google Scholar 

  4. Ali, A., Kalisch, H.: Mechanical balance laws for Boussinesq models of surface water waves. J. Nonlinear Sci. 22, 371–398 (2012)

    Google Scholar 

  5. Benjamin, T.B., Lighthill, M.J.: On cnoidal waves and bores. Proc. R. Soc. Lond. A 224, 448–460 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  6. Binnie, A.M., Orkney, J.C.: Experiments on the flow of water from a reservoir through an open channel II. The formation of hydraulic jumps. Proc. R. Soc. Lond. A 230:237–246 (1955).

    Google Scholar 

  7. Bjørkavåg, M., Kalisch, H.: Wave breaking in Boussinesq models for undular bores. Phys. Lett. A 375, 157–1578 (2011)

    Article  Google Scholar 

  8. Bona, J.L., Chen, M., Saut, J.-C.: Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. I. Derivation and linear theory. J. Nonlinear Sci. 12, 283–318 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bona, J.L., Colin, T., Lannes, D.: Long wave approximations for water waves. Arch. Ration. Mech. Anal. 178, 373–410 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bona, J.L., Dougalis, V.A., Mitsotakis, D.E.: Numerical solution of KdV-KdV systems of Boussinesq equations. I. The numerical scheme and generalized solitary waves. Math. Comput. Simul. 74, 214–228 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bona, J.L., Grujić, Z., Kalisch, H.: A KdV-type Boussinesq system: From the energy level to analytic spaces. Discrete Contin. Dyn. Syst. 26, 1121–1139 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bona, J.L., Pritchard, W.G., Scott, L.R.: An evaluation of a model equation for water waves. Phil. Trans. Roy. Soc. Lond. A 302, 457–510 (1981)

    Article  MathSciNet  Google Scholar 

  13. Bona, J.L., Varlamov, V.V.: Wave generation by a moving boundary. In: Nonlinear partial differential equations and related analysis, pp. 41–71. Contemp. Math., vol. 371, American Mathematical Society, Providence (2005)

  14. Borluk, H., Kalisch, H.: Particle dynamics in the KdV approximation. Wave Motion 49, 691–709 (2012)

    Article  Google Scholar 

  15. Byatt-Smith, J.G.B.: The effect of laminar viscosity on the solution of the undular bore. J. Fluid Mech. 48, 33–40 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chanson, H.: The Hydraulics of Open Channel Flow. Arnold, London (1999)

    Google Scholar 

  17. Chanson, H.: Current knowledge in hydraulic jumps and related phenomena. A survey of experimental results. Eur. J. Mech. B Fluids 28, 191–210 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chanson, H.: Undular tidal bores: basic theory and free-surface characteristics. J. Hydraul. Eng. ASCE 136, 940–944 (2010)

    Article  Google Scholar 

  19. Chen, M.: Exact solution of various Boussinesq systems. Appl. Math. Lett. 11, 45–49 (1998)

    Article  MATH  Google Scholar 

  20. Constantin, A.: The trajectories of particles in Stokes waves. Invent. Math. 166, 523–535 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Constantin, A., Strauss, W.: Pressure beneath a Stokes wave. Comm. Pure Appl. Math. 63, 533–557 (2010)

    MathSciNet  MATH  Google Scholar 

  22. Duruk, N., Erkip, A., Erbay, H.A.: A higher-order Boussinesq equation in locally non-linear theory of one-dimensional non-local elasticity. IMA J. Appl. Math. 74, 97–106 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Dutykh, D., Dias, F.: Energy of tsunami waves generated by bottom motion. Proc. R. Soc. Lond. A 465, 725–744 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ehrnström, M.: On the streamlines and particle paths of gravitational water waves. Nonlinearity 21, 1141–1154 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ehrnström, M., Escher, J., Wahlen, E.: Steady water waves with multiple critical layers. SIAM J. Math. Anal. 43, 1436–1456 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. El, G.A., Grimshaw, R.H.J., Smyth, N.F.: Unsteady undular bores in fully nonlinear shallow-water theory. Phys. Fluids 18, 027104 (2006)

    Article  MathSciNet  Google Scholar 

  27. Favre, H.: Ondes de Translation. Dunod, Paris (1935)

    Google Scholar 

  28. Fokas, A.S., Pelloni, B.: Boundary value problems for Boussinesq type systems. Math. Phys. Anal. Geom. 8, 59–96 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Henry, D.: Analyticity of the streamlines for periodic travelling free surface capillary-gravity water waves with vorticity. SIAM J. Math. Anal. 42: 103–3111 (2010)

    Google Scholar 

  30. Kalisch, H.: A uniqueness result for periodic traveling waves in water of finite depth. Nonlinear Anal. 58, 779–785 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kalisch, H., Bjørkavåg, M.: Energy budget in a dispersive model for undular bores. Proc. Est. Acad. Sci. 59, 172–181 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Keulegan, G.H., Patterson, G.W.: Mathematical theory of irrotational translation waves. Nat. Bur. Standards J. Res. 24, 47–101 (1940)

    Article  MathSciNet  Google Scholar 

  33. Koch, C., Chanson, H.: Unsteady Turbulence Characteristics in an Undular Bore in River Flow 2006, pp. 79–88. Taylor& Francis Group, London (2006)

  34. Koch, C., Chanson, H.: Turbulence measurements in positive surges and bores. J. Hydraul. Res. 47, 29–40 (2009)

    Article  Google Scholar 

  35. Lemoine, R.: Sur les ondes positives de translation dans les canaux et sur le ressaut ondule de faible amplitude. Jl. La Houille Blanche. 183–185 (1948)

  36. Madsen, P.A., Schäffer, H.A.: Higher-order Boussinesq-type equations for surface gravity waves: derivation and analysis. Phil. Trans. Roy. Soc. Lond. A 356, 3123–3184 (1998)

    Article  MATH  Google Scholar 

  37. Peregrine, P.G.: Calculations of the development of an undular bore. J. Fluid Mech. 25, 321–330 (1966)

    Article  Google Scholar 

  38. Rayleigh, Lord: On the Theory of Long Waves and Bores. Proc. R. Soc. Lond. A A90, 324–328 (1914)

    Google Scholar 

  39. Sturtevant, B.: Implications of experiments on the weak undular bore. Phys. Fluids 6, 1052–1055 (1965)

    Article  Google Scholar 

  40. Svendsen, I.A.: Introduction to Nearshore Hydrodynamics. World Scientific, Singapore (2006)

    MATH  Google Scholar 

  41. Varlamov, V.: On the initial-boundary value problem for the damped Boussinesq equation. Discrete Contin. Dynam. Syst. 4, 431–444 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  42. Varlamov, V.: On the spatially two-dimensional Boussinesq equation in a circular domain. Nonlinear Anal. 699–725 (2001)

  43. Wei, G., Kirby, J.T., Grilli, S.T., Subramanya, R.: A fully nonlinear Boussinesq model for surface waves. Part 1. Highly nonlinear unsteady waves. J. Fluid Mech. 294, 71–92 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  44. Whitham, G.B.: Linear and Nonlinear Waves. McGraw-Hill, New York (1975)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Research Council of Norway. The authors would like to thank Professor John Albert for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Kalisch.

Additional information

This article is dedicated to the memory of our friend and colleague Vladimir Varlamov.

Appendix A: The numerical scheme

Appendix A: The numerical scheme

The numerical discretization used to find approximate solutions of the system (1.1) is briefly presented. First, it should be noted that mathematical aspects of the system (1.1) have been studied in [9, 11, 28]. In these works, a theory of well posedness for the Cauchy problem and various boundary-value problems has been developed. In [10], a finite-element method for the periodic problem was constructed. Here, we consider a finite-difference method. We begin by writing \(\zeta (x,t) = \eta (x,t) - \eta _0(x)\), and \(\xi (x,t) = w(x,t) - w_0(x)\), so that the functions \(\zeta \) and \(\xi \) satisfy homogeneous Dirichlet boundary conditions. Next, we use the transformation

$$\begin{aligned} \left( \begin{array}{l} \displaystyle u\\ \displaystyle v \end{array}\right)=\left( \begin{array}{ll} \displaystyle \root 4 \of {\frac{g}{h_0}}&\displaystyle \root 4 \of {\frac{h_0}{g}} \\ \displaystyle \root 4 \of {\frac{g}{h_0}}&\displaystyle - \root 4 \of {\frac{h_0}{g}} \end{array}\right)\left( \begin{array}{l} \displaystyle \zeta \\ \displaystyle \xi \end{array} \right) \end{aligned}$$
(5.1)

to obtain a system which is diagonal in the highest derivative. The new variables \(u\) and \(v\) satisfy the equations

$$\begin{aligned} \displaystyle u_t + \frac{1}{6} c_0 h_0^2 u_{xxx}&= - \left( \root 4 \of {\frac{g}{h_0}} \frac{\partial _x(u-v)}{2} + w_0^{\prime } \right) \left( u + \root 4 \of {\frac{h_0}{g}} w_0 + \root 4 \of {\frac{g}{h_0}} \eta _0 + \root 4 \of {\frac{g}{h_0}} h_0 \right) \\&\displaystyle - \left(\root 4 \of {\frac{h_0}{g}} \frac{\partial _x(u+v)}{2} + \eta _0^{\prime } \right) \left(\sqrt{\frac{g}{h_0}} \frac{u-v}{2} + \root 4 \of {\frac{g}{h_0}}w_0 + \root 4 \of {\frac{h_0}{g}} g \right) \\&\displaystyle - \root 4 \of {\frac{h_0}{g}} \frac{g h_0^2}{6} \eta _0^{\prime \prime \prime } - \root 4 \of {\frac{g}{h_0}} \frac{h_0^3}{6} w_0^{\prime \prime \prime } \\&\displaystyle \equiv \lambda _u (u,v,\partial _x),\\ v_t-\frac{1}{6} c_0 h_0^2 v_{xxx}&= \left( \root 4 \of {\frac{g}{h_0}} \frac{\partial _x(u-v)}{2} + w_0^{\prime } \right) \left( -v + \root 4 \of {\frac{h_0}{g}} w_0 - \root 4 \of {\frac{g}{h_0}} \eta _0 - \root 4 \of {\frac{g}{h_0}} h_0 \right) \\&\displaystyle - \left(\root 4 \of {\frac{h_0}{g}} \frac{\partial _x(u+v)}{2} + \eta _0^{\prime } \right) \left(\sqrt{\frac{g}{h_0}} \frac{u-v}{2} + \root 4 \of {\frac{g}{h_0}}w_0^{\prime } - \root 4 \of {\frac{h_0}{g}} g \right) \\&\displaystyle + \root 4 \of {\frac{h_0}{g}} \frac{g h_0^2}{6} \eta _0^{\prime \prime \prime } - \root 4 \of {\frac{g}{h_0}} \frac{h_0^3}{6} w_0^{\prime \prime \prime } \\&\displaystyle \equiv \lambda _v (u,v, \partial _x). \end{aligned}$$

The functions \(u\) and \(v\) also satisfy homogeneous Dirichlet boundary conditions at the endpoints \(x_1\) and \(x_2\) of the computational domain. In addition, we require the Neumann conditions \(u_x(x_2,t)=0\) and \(v_x(x_1,t)=0\). The first and third spatial derivatives are approximated by the matrices \(D_{N,1}\) and \(D_{N,3}^u\), \(D_{N,3}^v\), respectively. The matrix \(D_{N,1}\) arises from a standard finite-difference approximation of the first derivative. The matrix \(D_{N,3}^u\) is given by

$$\begin{aligned} D_{N,3}^u=\frac{1}{2(\delta x)^3} \left( \begin{array}{l@{\quad }l@{\quad }l@{\quad }l@{\quad }l@{\quad }l@{\quad }l} 10&-12&6&-1&\,&\\ 2&0&-2&1&\,&\\ -1&2&0&-2&1&\,&\\&\ddots&\ddots&\ddots&\ddots&\ddots&\\&\,&-1&2&0&-2&1 \\&\,&-1&2&0&-2 \\&\,&\,&-1&2&1 \\ \end{array} \right). \end{aligned}$$
(5.2)

This matrix arises from the use of one-sided Taylor approximations on the left side of the domain, since only one boundary conditions is required there. Since a Neumann condition is given on the right side of the domain, a simpler pattern is seen in the right lower half of the matrix. Similar considerations are applied to construct \(D_{N,3}^v\).

The system of ordinary differential equations resulting from the spatial discretization is integrated with a combined Crank-Nicholson Adams-Bashforth method. The linear terms are treated with a Crank-Nicholson method, while the nonlinear terms are treated using an Adams-Bashforth method. This combination of time discretizations is explicit, but treats the highest-order spatial derivatives implicitly. Using the notation \(U_N^m\) to denote the \(N\)-vector approximating \(u(\cdot , m \, \delta t)\) at the \(m\)-th time step, and respectively for \(V_N^m\), the equations to be solved at the \(m\)-th time step are

$$\begin{aligned} U_N^{m+1}&= (I+c_0h_0^2 {\textstyle \frac{\delta t}{12}}D_{N,3}^u)^{-1} [(I-c_0h_0^2{\textstyle \frac{\delta t}{12}}D_{N,3}^u)U_N^{m}\\&+{\textstyle \frac{\delta t}{2}}\{ 3\lambda _u(U_N^m,V_N^m,D_{N,1}) -\lambda _u(U_N^{m-1},V_N^{m-1},D_{N,1})\}]\\ V_N^{m+1}&= (I-c_0h_0^2{\textstyle \frac{\delta t}{12}}D_{N,3}^v)^{-1} [(I+c_0h_0^2{\textstyle \frac{\delta t}{12}}D_{N,3}^v )V_N^{m}\\&+{\textstyle \frac{\delta t}{2}}\{ 3\lambda _v(U_N^m,V_N^m,D_{N,1})-\lambda _v(U_N^{m-1},V_N^{m-1},D_{N,1})\}] \end{aligned}$$

As two previous time steps are required to compute the next time step, the very first time step is done using a simple forward Euler method. The Euler method is locally of second order, and a single time step does not lead to instability problems. In Table 4, a convergence study is presented, using an exact solution found in [19]. In non-dimensional variables, where both \(g=1\) and \(h_0=1\) are set to unity, this solution is given by

$$\begin{aligned} \eta (x,t)&=-\frac{6+\kappa }{12}+\frac{\kappa }{4}\ \text{ sech}^2\left(\frac{1}{2}\sqrt{\kappa }(x+x_0-ct)\right),\\ w(x,t)&=\frac{\mp \sqrt{2}(6+\kappa )+12c}{12}\pm \frac{\kappa }{2\sqrt{2}}\ \text{ sech}^2\left(\frac{1}{2}\sqrt{\kappa }(x+x_0-ct)\right), \end{aligned}$$
(5.3)

for positive \(\kappa \) and \(c\). This exact traveling wave is integrated in time, and it can be seen that second-order convergence is obtained for both the spatial and the temporal discretization. Figure 5 shows both the initial profile \(\eta (x,0)\) and the computed profile \(\eta (x,t)\) at \(t=10\).

Table 4 Convergence of time and space discretization
Fig. 5
figure 5

Plots of \(\eta \) of the exact traveling wave defined in (A-3) with \(\kappa =\frac{1}{2}\) and \(c=1\), shown at time \(t=10\). The computed profile was obtained with a resolution \(\delta x= 0.01\) and \(\delta t=0.01\)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ali, A., Kalisch, H. A dispersive model for undular bores. Anal.Math.Phys. 2, 347–366 (2012). https://doi.org/10.1007/s13324-012-0040-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13324-012-0040-7

Keywords

Navigation