Skip to main content
Log in

Effects of Caffeic Acid and Quercetin on In Vitro Permeability, Metabolism and In Vivo Pharmacokinetics of Melatonin in Rats: Potential for Herb-Drug Interaction

  • Original Research Article
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and objectives

Melatonin is a popular dietary supplement and also considered as pharmaceutical product for sleep disorders. Caffeic acid and quercetin are widely distributed in leafy vegetables, fruits, tea extract, and both are used as natural antioxidant. There is an immense concern for health researchers to study the herb/food-drug interactions of melatonin. It is mainly metabolized by CYP1A2 in human so that herbs/foods containing cytochrome P450 (CYP) inhibitors can affect pharmacokinetics of melatonin. By considering pharmacokinetic aspects, the present study was undertaken to evaluate the effects of caffeic acid and quercetin on Caco-2 cells permeability, metabolism, CYP1A inhibition in vitro assay systems and a single dose pharmacokinetics of melatonin in vivo rats.

Methods

The effects of caffeic acid and quercetin on melatonin permeability were tested in Caco-2 cells. Metabolic stability and CYP1A activity were investigated in rat liver microsomes (RLMs) using probe substrates (melatonin/phenacetin in vitro). Melatonin and phenacetin were incubated in RLMs with or without caffeic acid and quercetin, and the IC50 values were determined. The pharmacokinetics of melatonin conducted in rats after a single dose (15 mg/kg) pre-treatment with caffeic acid, quercetin and caffeic acid plus quercetin followed by oral dose of melatonin at 5 mg/kg. Analysis of all samples was with LC–MS/MS.

Results

Caffeic acid and quercetin did not alter Caco-2 permeability of melatonin in apical to basolateral direction and vice versa. Melatonin was metabolized in rat liver microsomes, which was inhibited by both caffeic acid and quercetin through CYP1A. The concomitant oral administration of melatonin along with 15 mg/kg of caffeic acid or quercetin or caffeic acid plus quercetin significantly (p < 0.05) increased the AUC0–t of melatonin by 30.0, 66.7 and 114.0%, respectively. The apparent oral rat plasma clearance (CL/F) of melatonin also decreased significantly (p < 0.05) by 28.78, 47.87 and 50% in presence of caffeic acid, quercetin and caffeic acid plus quercetin, respectively.

Conclusion

These findings suggest that caffeic acid and quercetin improved oral exposure of melatonin via CYP1A inhibition pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hattori A, Migitaka H, Iigo M, Itoh M, Yamamoto K, Ohtani-Kaneko R, Hara M, Suzuki T, Reiter RJ. Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Biochem Mol Biol Int. 1995;35:627–34.

    CAS  PubMed  Google Scholar 

  2. Bonnefont-Rousselot D, Collin F. Melatonin: action as antioxidant and potential applications in human disease and aging. Toxicology. 2010;278:55–67.

    Article  CAS  PubMed  Google Scholar 

  3. Bubenik GA, Konturek SJ. Melatonin and aging: prospects for human treatment. J Physiol Pharmacol. 2011;62:13–9.

    CAS  PubMed  Google Scholar 

  4. Von Gall C, Stehle JH, Weaver DR. Mammalian melatonin receptors: molecular biology and signal transduction. Cell Tissue Res. 2002;309:151–62.

    Article  Google Scholar 

  5. Vijayalaxmi TCR Jr, Reiter RJ, Herman TS. Melatonin: from basic research to cancer treatment clinics. J Clin Oncol. 2002;20:2575–601.

    Article  CAS  PubMed  Google Scholar 

  6. Acuna-Castroviejo D, Escames G, Leon J, Carazo A, Khaldy H. Mitochondrial regulation by melatonin and its metabolites. Adv Exp Med Biol. 2003;527:549–57.

    Article  CAS  PubMed  Google Scholar 

  7. Dun-Xian T, Lucien CM, Eduardo E-Z, Zhou Z, Russel JR. Melatonin as a potent and inducible endogenous antioxidant: synthesis and metabolism. Molecules. 2015;20:18886–906.

    Article  Google Scholar 

  8. Borazan H, Tuncer S, Yalcin N, Erol A, Otelcioglu S. Effects of preoperative oral melatonin medication on postoperative analgesia, sleep quality, and sedation in patients undergoing elective prostatectomy: a randomized clinical trial. J Anesth. 2010;24:155–60.

    Article  PubMed  Google Scholar 

  9. Fourtillan JB, Brisson AM, Gobin P, Ingrand I, Decourt JP, Girault J. Bioavailability of melatonin in humans after day-time administration of D(7) melatonin. Biopharm Drug Dispos. 2000;21:15–22.

    Article  CAS  PubMed  Google Scholar 

  10. Lane EA, Moss HB. Pharmacokinetics of melatonin in man: first pass hepatic metabolism. J Clin Endocrinol Metab. 1985;61:1214–6.

    Article  CAS  PubMed  Google Scholar 

  11. Yeleswaram K, Vachharajani N, Santone K. Involvement of cytochrome P-450 isozymes in melatonin metabolism and clinical implications. J Pineal Res. 1999;26:190–1.

    Article  CAS  PubMed  Google Scholar 

  12. von Bahr C, Ursing C, Yasui N, Tybring G, Bertilsson L, Rojdmark S. Fluvoxamine but not citalopram increases serum melatonin in healthy subjects—an indication that cytochrome P450 CYP1A2 and CYP2C19 hydroxylate melatonin. Eur J Clin Pharmacol. 2000;56:123–7.

    Article  Google Scholar 

  13. Hartter S, Ursing C, Morita S, Tybring G, von Bahr C, Christensen M, Rojdmark S, Bertilsson L. Orally given melatonin may serve as a probe drug for cytochrome P450 1A2 activity in vivo: a pilot study. Clin Pharmacol Ther. 2001;70:10–6.

    Article  CAS  PubMed  Google Scholar 

  14. Peuhkuri K, Sihvola N, Korpela R. Dietary factors and fluctuating levels of melatonin. Food Nutr Res. 2012;56:17252.

    Article  Google Scholar 

  15. Scalbert A, Williamson G. Dietary intake and bioavailability of polyphenols. J Nutr. 2000;130:2073S–85S.

    CAS  PubMed  Google Scholar 

  16. Fresco P, Borges F, Diniz C, Marques MP. New insights on the anticancer properties of dietary polyphenols. Med Res Rev. 2006;26:747–66.

    Article  CAS  PubMed  Google Scholar 

  17. Han X, Shen T, Lou H. Dietary polyphenols and their biological significance. Int J Mol Sci. 2007;8:950–88.

    Article  CAS  PubMed Central  Google Scholar 

  18. Atal CK, Dubey KR, Singh J. Biochemical basis of enhanced drug bioavailability by piperine: evidence that piperine is a potent inhibitor of drug metabolism. J Pharmacol Exp Ther. 1984;232:258–62.

    Google Scholar 

  19. Hollman PCH, Katan MB. Absorption, metabolism and health effects of dietary flavonoids in man. Biomed Pharmacother. 1997;51:305–10.

    Article  CAS  PubMed  Google Scholar 

  20. Choi JS, Li X. Enhanced diltiazem bioavailability after oral administration of diltiazem with quercetin to rabbits. Int J Pharm. 2005;297:1–8.

    Article  CAS  PubMed  Google Scholar 

  21. Suzuki H, Sugiyama Y. Role of metabolic enzymes and efflux transporters in the absorption of drugs from the small intestine. Eur J Pharm Sci. 2000;12:3–12.

    Article  CAS  PubMed  Google Scholar 

  22. Murray M. Mechanisms and significance of inhibitory drug interactions involving cytochrome P450 enzymes. Int J Mol Med. 1999;3:227–38.

    CAS  PubMed  Google Scholar 

  23. Wrighton SA, Stevens JC. The human hepatic cytochromes P450 involved in drug metabolism. Crit Rev Toxicol. 1992;22:1–21.

    Article  CAS  PubMed  Google Scholar 

  24. Obach R. Inhibition of human cytochrome P450 enzymes by constituents of St. John’s Wort, an herbal preparation used in the treatment of depression. J Pharm Exp Ther. 2000;294:88–95.

    CAS  Google Scholar 

  25. Rastogi H, Jana S. Evaluation of inhibitory effects of caffeic acid and quercetin on human liver cytochrome P450 activities. Phytother Res. 2014;28:1873–8.

    Article  CAS  PubMed  Google Scholar 

  26. Rastogi H, Jana S. Evaluation of physicochemical properties and intestinal permeability of six dietary polyphenols in human intestinal colon adenocarcinoma Caco-2 cells. Eur J Drug Metab Pharmacokinet. 2016;41:33–43.

    Article  CAS  PubMed  Google Scholar 

  27. Moody GC, Griffin SJ, Mather AN, McGinnity DF, Riley RJ. Fully automated analysis of activities catalysed by the major human liver cytochrome P450 (CYP) enzymes: assessment of human CYP inhibition potential. Xenobiotica. 1999;29:53–75.

    Article  CAS  PubMed  Google Scholar 

  28. Davies B, Morris T. Physiological parameters in laboratory animals and humans. Pharm Res. 1993;10:1093–5.

    Article  CAS  PubMed  Google Scholar 

  29. Zendulka O, Zahradníková L, Juřica J, Totušek J. The influence of trans-resveratrol and quercetin on the activity of CYP1A2 in rat. Czech J Food Sci. 2008;26:S60–4.

    CAS  Google Scholar 

  30. Bano G, Raina RK, Zutshi U, Bedi KL, Johri RK, Sharma SC. Effect of piperine on bioavailability and pharmacokinetics of propranolol and theophylline in healthy volunteers. Eur J Clin Pharmacol. 1991;41:615–7.

    Article  CAS  PubMed  Google Scholar 

  31. Velpandian T, Jasuja R, Bhardwaj RK, Jaiswal J, Gupta SK. Piperine in food: interference in the pharmacokinetics of phenytoin. Eur J Drug Metab Pharmacokinet. 2001;26:241–7.

    Article  CAS  PubMed  Google Scholar 

  32. Silberberg M, Morand C, Mathevon T, Besson C, Manach C, Scalbert A, Remesy C. The bioavailability of polyphenols is highly governed by the capacity of the intestine and of the liver to secrete conjugated metabolites. Eur J Nutr. 2006;45:88–96.

    Article  CAS  PubMed  Google Scholar 

  33. Skene DJ, Papagiannidou E, Hashemi E, Snelling J, Lewis DF, Fernandez M, Ioannides C. Contribution of CYP1A2 in the hepatic metabolism of melatonin: studies with isolated microsomal preparations and liver slices. J Pineal Res. 2001;31:333–42.

    Article  CAS  PubMed  Google Scholar 

  34. Crettol S, Petrovic N, Murray M. Pharmacogenetics of phase I and phase II drug metabolism. Curr Pharm Des. 2010;16:204–19.

    Article  CAS  PubMed  Google Scholar 

  35. Venkatakrishnan K, von Moltke LL, Greenblatt DJ. Human cytochromes P450 mediating phenacetin O-deethylation in vitro: validation of the high affinity component as an index of CYP1A2 activity. J Pharm Sci. 1998;87:1502–7.

    Article  CAS  PubMed  Google Scholar 

  36. Tassaneeyakul W, Birkett DJ, Veronese ME, McManus ME, Tukey RH, Quattrochi LC, Gelboin HV, Miners JO. Specificity of substrate and inhibitor probes for human cytochrome P450 1A1 and 1A2. J Pharmacol Exp Ther. 1993;265:401–7.

    CAS  PubMed  Google Scholar 

  37. Kroon PA, Clifford MN, Crozier A, Day AJ, Donovan JL, Manach C, Williamson G. How should we assess the effects of exposure to dietary polyphenols in vitro? Am J Clin Nutr. 2004;80:15–21.

    CAS  PubMed  Google Scholar 

  38. Manach C, Williamson G, Morand C, Scalbert A, Remesy C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr. 2005;81:230S–42S.

    CAS  PubMed  Google Scholar 

  39. Liu RH. Health-promoting components of fruits and vegetables in the diet. Adv Nutr. 2013;4:384S–92S.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zevin S, Benowitz NL. Drug Interactions with tobacco smoking: an update. Clin Pharmacokinet. 1999;36:425–38.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We wish to thank M Patra for his proof reading support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snehasis Jana.

Ethics declarations

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution at which the studies were conducted.

Funding

Authors declare that there was no external source of funding.

Conflict of interest

SJ and HR declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jana, S., Rastogi, H. Effects of Caffeic Acid and Quercetin on In Vitro Permeability, Metabolism and In Vivo Pharmacokinetics of Melatonin in Rats: Potential for Herb-Drug Interaction. Eur J Drug Metab Pharmacokinet 42, 781–791 (2017). https://doi.org/10.1007/s13318-016-0393-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-016-0393-7

Keywords

Navigation