Skip to main content
Log in

Supramolecular Complex of Ibuprofen with Larch Polysaccharide Arabinogalactan: Studies on Bioavailability and Pharmacokinetics

  • Original Research Article
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and Objectives

In the present work, pharmacological and pharmacokinetic properties of the supramolecular complex of non-steroid anti-inflammatory drug ibuprofen (IBU) with natural polysaccharide arabinogalactan (AG) were studied. The main goals of such complexation were the increase of ibuprofen’s bioavailability and decrease its effective dose after oral administration.

Methods

The complex with mass ratio as IBU:AG 1:10 was obtained by mechanochemical synthesis and characterized by water solubility, electron microscopy, differential scanning calorimetry, X-ray powder diffraction analysis and 1H-nuclear magnetic resonance spectroscopy. Different animal models of pain and inflammation was used to investigate IBU:AG biological effects. Plasma concentration of IBU and its pharmacokinetic parameters were evaluated after oral introduction.

Results

It was found that ibuprofen’s effective analgesic and anti-inflammatory dose decreased twofold after its introduction as a complex with AG. The reason of this difference is due to the increase of ibuprofen concentration in rats’ plasma: C max of IBU at doses of 20 and 40 mg/kg was found as 0.088 and 0.132 μg/ml, whereas C max of IBU in the complex form was 0.103 and 0.160 μg/ml, respectively.

Conclusions

Thus, we have shown that complexation of the IBU with AG results in its bioavailability increase, reduction of the effective dose and should decrease toxic side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Amidon S, Brown JE, et al. Colon-targeted oral drug delivery systems: design trends and approaches. AAPS PharmSciTech. 2015;16(4):731–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Verma R, Garg S. Current status of drug delivery technologies and future directions. Pharm Tech On-line. 2001;25:1–14.

    Google Scholar 

  3. Amidon GL, Lennernäs H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12(3):413–20.

    Article  CAS  PubMed  Google Scholar 

  4. Loftsson T, Jarhob P, Másson M, Järvinen T. Cyclodextrins in drug delivery. Expert Opin Drug Deliv. 2005;2(2):335–51.

    Article  CAS  PubMed  Google Scholar 

  5. Bonnet V, Gervaise C, Djedaïni-Pilard F, Furlan A, Sarazin C. Cyclodextrin nanoassemblies: a promising tool for drug delivery. Drug Discov Today. 2015;20(9):1120–6.

    Article  CAS  PubMed  Google Scholar 

  6. Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z. Polysaccharides based nanoparticles as drug delivery systems. Adv Drug Deliv Rev. 2008;60:1650–62.

    Article  CAS  PubMed  Google Scholar 

  7. Kelly GS. Larch arabinogalactan: clinical relevance of a novel immune-enhancing polysaccharide. Altern Med Rev. 1999;4(2):96–103.

    CAS  PubMed  Google Scholar 

  8. Dushkin AV, Meteleva ES, Tolstikova TG, et al. Mechanochemical preparation and pharmacological activities of water-soluble intermolecular complexes of arabinogalactan with medicinal agents. Rus Chem Bull. 2008;6:1299–307.

    Article  Google Scholar 

  9. Dushkin AV, Tolstikova TG, Khvostov MV, Tolstikov GA. Complexes of polysaccharides and glycyrrhizic acid with drug molecules-mechanochemical synthesis and pharmacological activity. In: Karunaratne DN, editor. The complex world of polysaccharides. InTech; 2012. pp. 573–602.

  10. US FDA Food Additive Status List. 2016. http://www.fda.gov/food/ingredientspackaginglabeling/foodadditivesingredients/ucm091048.htm#ftnA. Accessed 03 Jun 2016.

  11. Chistyachenko YS, Dushkin AV, Polyakov NE, Khvostov MV, Tolstikova TG, Tolstikov GA, Lyakhov NZ. Polysaccharide arabinogalactan from larch Larix sibirica as carrier for molecules of salicylic and acetylsalicylic acid: preparation, physicochemical and pharmacological study. Drug Deliv. 2015;22(3):400–7.

    Article  CAS  PubMed  Google Scholar 

  12. Chistyachenko YS, Meteleva ES, Pakharukova MY, Katokhin AV, Khvostov MV, et al. Physicochemical and pharmacological study of the newly synthesized complex of albendazole and polysaccharide arabinogalactan from larch wood. Curr Drug Deliv. 2015;12(5):477–90.

    Article  CAS  PubMed  Google Scholar 

  13. Polyakov NE, Kispert LD. Water soluble biocompatible vesicles based on polysaccharides and oligosaccharides inclusion complexes for carotenoid delivery. Carbohydr Polym. 2015;128:207–19.

    Article  CAS  PubMed  Google Scholar 

  14. Apanasenko IE, Selyutina OY, Polyakov NE, Suntsova LP, Meteleva ES, Dushkin AV, et al. Solubilization and stabilization of macular carotenoids by water soluble oligosaccharides and polysaccharides. Arch Biochem Biophys. 2015;572:58–65.

    Article  CAS  PubMed  Google Scholar 

  15. Khvostov MV, Chernonosov AA, Tolstikova TG, Kasakin MF, Fedorova OS, Dushkin AV. Effect of complexation with arabinogalactan on pharmacokinetics of “guest” drugs in rats: for example, warfarin. Biomed Res Int. 2013;2013:156381.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tolstikova TG, Khvostov MV, Bryzgalov AO. The complexes of drugs with carbohydrate-containing plant metabolites as pharmacologically promising agents. Mini Rev Med Chem. 2009;9:1317–28.

    Article  CAS  PubMed  Google Scholar 

  17. Legg T, Laurent AL, Leyva R, Kellstein D. Ibuprofen sodium is absorbed faster than standard ibuprofen tablets: results of two open-label, randomized, crossover pharmacokinetic studies. Drugs R&D. 2014;14(4):283–90.

    Article  CAS  Google Scholar 

  18. Klueglich M, Ring A, Scheuerer S, et al. Ibuprofen extrudate, a novel, rapidly dissolving ibuprofen formulation: relative bioavailability compared to ibuprofen lysinate and regular ibuprofen, and food effect on all formulations. J Clin Pharmacol. 2005;45:1055–61.

    Article  CAS  PubMed  Google Scholar 

  19. Levis KA, Lane ME, Corrigan OI. Effect of buffer media composition on the solubility and effective permeability coefficient of ibuprofen. Int J Pharm. 2003;253:49–59.

    Article  CAS  PubMed  Google Scholar 

  20. Ong CP, Chow KK, Ong FM, Lee HK, Li SFY. Use of overlapping resolution mapping scheme for optimization of the high-performance liquid chromatographic separation of pharmaceuticals. J Chromatogr A. 1995;692:207–12.

    Article  CAS  Google Scholar 

  21. Zhu PL, Snyder LR, Dolan JW, Djordjevic NM, Hill DW, Sander LC, Waeghe TJ. Combined use of temperature and solvent strength in reversed-phase gradient elution. I. Predicting separation as a function of temperature and gradient conditions. J Chromatogr A. 1996;756:21–39.

    Article  CAS  PubMed  Google Scholar 

  22. Sato J, Amizuka T, Niida Y, Umetsu M, Ito K. Simple, rapid and sensitive method for the determination of indomethacin in serum by high-performance liquid chromatography with ultraviolet detection. J Chromatogr B. 1997;692:241–4.

    Article  CAS  Google Scholar 

  23. Van Heeswijk RPG, Hoetelmans RMW, Meenhorst PL, Mulder JW, Beijnen JH. Rapid determination of nevirapine in human serum by ion-pair reversed-phase high-performance liquid chromatography with ultraviolet detection. J Chromatogr B. 1998;713:395–9.

    Article  Google Scholar 

  24. Zhang Y, Huo M, Zhou J, Xie S. PKSolver: an add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput Methods Progr Biomed. 2010;99(3):306–14.

    Article  Google Scholar 

  25. Emsley JW, Freeney J, Sutcliffe LH. High resolution nuclear magnetic resonance spectroscopy. Oxford: Pergamon Press; 1965.

    Google Scholar 

  26. Popova MV, Tchernyshev YS, Michel D. NMR investigation of the short-chain ionic surfactant-water systems. Langmuir. 2004;20:632–6.

    Article  CAS  PubMed  Google Scholar 

  27. Chistyachenko YS, Dushkin AV, Polyakov NE, Khvostov MV, Tolstikova TG, Tolstikov GA, Lyakhov NZ. Polysaccharide arabinogalactan from larch Larix sibirica as carrier for molecules of salicylic and acetylsalicylic acid: preparation, physicochemical and pharmacological study. Drug Deliv. 2015;22(3):400–7.

    Article  CAS  PubMed  Google Scholar 

  28. Dushkin AV, Meteleva ES, Tolstikova TG, Tolstikov GA, Polyakov NE, Medvedeva EN, Neverova NA, Babkin VA. Mechanochemical preparation and pharmacological activities of water-soluble intermolecular complexes of arabinogalactan with medicinal agents. Russ Chem Bull. 2008;6:1299–307.

    Article  Google Scholar 

  29. Dushkin AV, Meteleva ES, Tolstikova TG, Khvostov MV, Tolstikov GA. Mechanochemical preparation and properties of water-soluble intermolecular complexes of polysaccharides and β-cyclodextrin with pharmaceutical substances. Chem Sustain Dev. 2010;8:719–28.

    Google Scholar 

  30. Laska EM, Sunshine A, Marrero I, Olson N, Siegel C, McCormick N. The correlation between blood levels of ibuprofen and clinical analgesic response. Clin Pharmacol Ther. 1986;40:1–7.

    Article  CAS  PubMed  Google Scholar 

  31. Loftsson T, Vogensen SB, Brewster ME, Konrádsdóttir F. Effects of cyclodextrins on drug delivery through biological membranes. J Pharm Sci. 2007;96(10):2532–46.

    Article  CAS  PubMed  Google Scholar 

  32. Arima H, Hayashia Y, Higashi T, Motoyama K. Recent advances in cyclodextrin delivery techniques. Expert Opin Drug Deliv. 2015;12(9):1425–41.

    Article  PubMed  Google Scholar 

  33. Luzardo MC, Amalfa F, Nundez AM, Diaz S, Biondi de Lopez AC, Disalvo EA. Effect of trehalose and sucrose on the hydration and dipole potential of lipid bilayers. Biophys J. 2000;78:2452–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Andersen HD, Wang Ch, Arleth L, Peters GH, Westh P. Reconciliation of opposing views on membrane–sugar interactions. PNAS. 2011;108(5):1874–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail V. Khvostov.

Ethics declarations

Funding

This publication is supported by Grants 15-04-02538 and 15-29-05792 from the Russian Foundation for Basic Research.

Conflict of interest

Mikhail V. Khvostov, Sergey A. Borisov, Tatjana G. Tolstikova, Alexander V. Dushkin, Biligma D. Tsyrenova, Yulia S. Chistyachenko, Nikolay E. Polyakov, Galina G. Dultseva, Andrey A. Onischuk, Sergey V. An’kov declare no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. Approved by the Ethic Committee of the N.N. Vorozhtsov Institute of Organic Chemistry SB RAS (protocol No. 2/2015 from 21.01.2015).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 110 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khvostov, M.V., Borisov, S.A., Tolstikova, T.G. et al. Supramolecular Complex of Ibuprofen with Larch Polysaccharide Arabinogalactan: Studies on Bioavailability and Pharmacokinetics. Eur J Drug Metab Pharmacokinet 42, 431–440 (2017). https://doi.org/10.1007/s13318-016-0357-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-016-0357-y

Keywords

Navigation