Skip to main content
Log in

Optimizing the Clinical Use of Carvedilol in Liver Cirrhosis Using a Physiologically Based Pharmacokinetic Modeling Approach

  • Original Research Article
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and Objective

Liver cirrhosis is a complex pathophysiological condition that can affect the pharmacokinetics (PK) and hereby dosing of administered drugs. The physiologically based pharmacokinetic (PBPK) models are a valuable tool to explore PK of drugs in cirrhosis patients. The objective of this study was to develop and evaluate a PBPK-carvedilol-cirrhosis model with the available clinical data in liver cirrhosis patients and to recommend model-based drug dosing after exploring the underlying differences in unbound and total (bound and unbound) systemic carvedilol concentrations with the different disease stages.

Methods

A whole body PBPK model was developed using the population-based PBPK simulator, Simcyp®. After model development and evaluation in healthy adults, system parameters were modified according to the pathophysiological changes that occur in liver cirrhosis, and predictions were compared to available experimental data from liver cirrhosis Child–Pugh [CP]-C patients. A two-fold error range for the observed/predicted ratios (ratioObs/Pred) of the pharmacokinetic parameters was used for model evaluation. Simulations were then extended to cirrhosis CP-A and CP-B populations were no experimental data that are available to explore changes in drug disposition in these patients. Finally, drug unbound and total (bound and unbound) exposure were predicted in cirrhotic patients of different disease severity, and the results were compared to those of healthy adults.

Results

The developed model has successfully described carvedilol PK in healthy and cirrhosis CP-C patients. The model predictions showed that, there was an ~13-fold increase in unbound and ~7-fold increase in total (bound and unbound) systemic exposure of carvedilol between healthy and CP-C populations. To have comparable predicted unbound drug exposure in cirrhosis CP-A, CP-B, and CP-C populations as in healthy subjects receiving a dose of 25 mg, reductions of administered doses to 9.375 mg in CP-A, 4.68 mg in CP-B, and 2.34 mg in CP-C population were recommended.

Conclusion

The presented model-generated data can guide the optimization of carvedilol therapy on the basis of differences in unbound and total drug exposures with respect to disease severity and can help improve the design of some necessary clinical studies in the drug development process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Presented data were extracted from Johnson et al. [7] and Simcyp® version 14 release 1. CYP cytochrome P450

Fig. 3
Fig. 4

The observed data are taken from the values published in literature [26]

Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Verbeeck RK. Pharmacokinetics and dosage adjustment in patients with hepatic dysfunction. Eur J Clin Pharmacol. 2008;64(12):1147–61.

    Article  CAS  PubMed  Google Scholar 

  2. Morgan DJ, McLean AJ. Clinical pharmacokinetic and pharmacodynamic considerations in patients with liver disease. An update. Clin Pharmacokinet. 1995;29(5):370–91.

    Article  CAS  PubMed  Google Scholar 

  3. U.S. Food and Drug Administration Guidance for industry: pharmacokinetics in patients with impaired hepatic function. Study design, and impact on dosing and labeling. Rockville: FDA; 2003.

  4. European Medicines Agency Committee for Medicinal Products for Human Use. Guideline on the evaluation of the pharmacokinetics of medicinal products in patients with impaired hepatic function. London: European Medicines Agency, 2005.

  5. Jones HM, Mayawala K, Poulin P. Dose selection based on physiologically based pharmacokinetic (PBPK) approaches. AAPS J. 2013;15(2):377–87.

    Article  CAS  PubMed  Google Scholar 

  6. Edginton AN, Willmann S. Physiology-based simulations of a pathological condition: prediction of pharmacokinetics in patients with liver cirrhosis. Clin Pharmacokinet. 2008;47(11):743–52.

    Article  PubMed  Google Scholar 

  7. Johnson TN, Boussery K, Rowland-Yeo K, Tucker GT, Rostami-Hodjegan A. A semi-mechanistic model to predict the effects of liver cirrhosis on drug clearance. Clin Pharmacokinet. 2010;49(3):189–206.

    Article  CAS  PubMed  Google Scholar 

  8. Li GF, Wang K, Chen R, Zhao HR, Yang J, Zheng QS. Simulation of the pharmacokinetics of bisoprolol in healthy adults and patients with impaired renal function using whole-body physiologically based pharmacokinetic modeling. Acta Pharmacol Sin. 2012;33(11):1359–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rasool MF, Khalil F, Laer S. A physiologically based pharmacokinetic drug-disease model to predict carvedilol exposure in adult and paediatric heart failure patients by incorporating pathophysiological changes in hepatic and renal blood flows. Clin Pharmacokinet. 2015;54(9):943–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Giannelli V, Lattanzi B, Thalheimer U, Merli M. Beta-blockers in liver cirrhosis. Ann Gastroenterol Q Publ Hell Soc Gastroenterol. 2014;27(1):20–6.

    Google Scholar 

  11. Bosch J, Berzigotti A, Garcia-Pagan JC, Abraldes JG. The management of portal hypertension: rational basis, available treatments and future options. J Hepatol. 2008;48(Supplement 1):S68–92.

    Article  CAS  PubMed  Google Scholar 

  12. de Franchis R. Revising consensus in portal hypertension: report of the Baveno V consensus workshop on methodology of diagnosis and therapy in portal hypertension. J Hepatol. 2010;53(4):762–8.

    Article  PubMed  Google Scholar 

  13. Sinagra E, Perricone G, D’Amico M, Tine F, D’Amico G. Systematic review with meta-analysis: the haemodynamic effects of carvedilol compared with propranolol for portal hypertension in cirrhosis. Aliment Pharmacol Ther. 2014;39(6):557–68.

    Article  CAS  PubMed  Google Scholar 

  14. Bosch J. Carvedilol: the beta-blocker of choice for portal hypertension? Gut. 2013;62(11):1529–30.

    Article  CAS  PubMed  Google Scholar 

  15. Reiberger T, Ulbrich G, Ferlitsch A, Payer BA, Schwabl P, Pinter M, et al. Carvedilol for primary prophylaxis of variceal bleeding in cirrhotic patients with haemodynamic non-response to propranolol. Gut. 2013;62(11):1634–41.

    Article  CAS  PubMed  Google Scholar 

  16. Hemstreet BA. Evaluation of carvedilol for the treatment of portal hypertension. pharmacotherapy. J Hum Pharmacol Drug Ther. 2004;24(1):94–104.

    Article  CAS  Google Scholar 

  17. Forrest EH, Bouchier IA, Hayes PC. Acute haemodynamic changes after oral carvedilol, a vasodilating beta-blocker, in patients with cirrhosis. J Hepatol. 1996;25(6):909–15.

    Article  CAS  PubMed  Google Scholar 

  18. Stanley AJ, Therapondos G, Helmy A, Hayes PC. Acute and chronic haemodynamic and renal effects of carvedilol in patients with cirrhosis. J Hepatol. 1999;30(3):479–84.

    Article  CAS  PubMed  Google Scholar 

  19. Abdelaziz A, Al-Araby M, Mahran L, Spahn-Langguth H. Active metabolites formed during hepatic first-pass: simulations featuring their contribution to the overall effect in altered liver clearance and drug-drug interactions. BMC Pharmacol. 2009;9(Suppl 2):A38.

    Article  PubMed Central  Google Scholar 

  20. Neugebauer G, Akpan W, Kaufmann B, Reiff K. Stereoselective disposition of carvedilol in man after intravenous and oral administration of the racemic compound. Eur J Clin Pharmacol. 1990;38(2):S108–11.

    Article  CAS  PubMed  Google Scholar 

  21. Neugebauer G, Akpan W, von Mollendorff E, Neubert P, Reiff K. Pharmacokinetics and disposition of carvedilol in humans. J Cardiovasc Pharmacol. 1987;10(Suppl 11):S85–8.

    Article  CAS  PubMed  Google Scholar 

  22. Neugebauer G, Neubert P. Metabolism of carvedilol in man. Eur J Drug Metab Pharmacokinet. 1991;16(4):257–60.

    Article  CAS  PubMed  Google Scholar 

  23. Behn F. Pharmakokinetik, Pharmakodynamik und Pharmakogenetik von Carvedilol in Abhängigkeit vom Lebensalter bei pädiatrischen Patienten mit Herzinsuffizienz. Dissertation zur Erlangung des Doktorgrades des Fachbereichs Chemie der Universität Hamburg. 2001.

  24. Tenero D, Boike S, Boyle D, Ilson B, Fesniak HF, Brozena S, et al. Steady-state pharmacokinetics of carvedilol and its enantiomers in patients with congestive heart failure. J Clin Pharmacol. 2000;40(8):844–53.

    Article  CAS  PubMed  Google Scholar 

  25. Giessmann T, Modess C, Hecker U, Zschiesche M, Dazert P, Kunert-Keil C, et al. CYP2D6 genotype and induction of intestinal drug transporters by rifampin predict presystemic clearance of carvedilol in healthy subjects. Clin Pharmacol Ther. 2004;75(3):213–22.

    Article  CAS  PubMed  Google Scholar 

  26. Neugebauer G, Gabor M, Reiff K. Pharmacokinetics and bioavailability of carvedilol in patients with liver cirrhosis. Drugs. 1988;36(6):148–54.

    Article  Google Scholar 

  27. Jamei M, Turner D, Yang J, Neuhoff S, Polak S, Rostami-Hodjegan A, et al. Population-based mechanistic prediction of oral drug absorption. AAPS J. 2009;11(2):225–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Berezhkovskiy LM. Volume of distribution at steady state for a linear pharmacokinetic system with peripheral elimination. J Pharm Sci. 2004;93(6):1628–40.

    Article  CAS  PubMed  Google Scholar 

  29. Wilkinson GR, Shand DG. Commentary: a physiological approach to hepatic drug clearance. Clin Pharmacol Ther. 1975;18(4):377–90.

    Article  CAS  PubMed  Google Scholar 

  30. Ohno A, Saito Y, Hanioka N, Jinno H, Saeki M, Ando M, et al. Involvement of human hepatic UGT1A1, UGT2B4, and UGT2B7 in the glucuronidation of carvedilol. Drug Metab Dispos Biol Fate Chem. 2004;32(2):235–9.

    Article  CAS  PubMed  Google Scholar 

  31. Takekuma Y, Yagisawa K, Sugawara M. Mutual inhibition between carvedilol enantiomers during racemate glucuronidation mediated by human liver and intestinal microsomes. Biol Pharm Bull. 2012;35(2):151–63.

    Article  CAS  PubMed  Google Scholar 

  32. Pugh RN, Murray-Lyon IM, Dawson JL, Pietroni MC, Williams R. Transection of the oesophagus for bleeding oesophageal varices. Br J Surg. 1973;60(8):646–9.

    Article  CAS  PubMed  Google Scholar 

  33. Meng F, Yin X, Ma X, Guo XD, Jin B, Li H. Assessment of the value of serum cholinesterase as a liver function test for cirrhotic patients. Biomed Rep. 2013;1(2):265–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Johnson TN, Rostami-Hodjegan A, Tucker GT. Prediction of the clearance of eleven drugs and associated variability in neonates, infants and children. Clin Pharmacokinet. 2006;45(9):931–56.

    Article  CAS  PubMed  Google Scholar 

  35. De Buck SS, Sinha VK, Fenu LA, Nijsen MJ, Mackie CE, Gilissen RA. Prediction of human pharmacokinetics using physiologically based modeling: a retrospective analysis of 26 clinically tested drugs. Drug Metab Dispos Biol Fate Chem. 2007;35(10):1766–80.

    Article  PubMed  Google Scholar 

  36. Khalil F, Laer S. Physiologically based pharmacokinetic models in the prediction of oral drug exposure over the entire pediatric age range-sotalol as a model drug. AAPS J. 2014;16(2):226–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Oldham HG, Clarke SE. In vitro identification of the human cytochrome P450 enzymes involved in the metabolism of R(+)- and S(-)-carvedilol. Drug Metab Dispos Biol Fate Chem. 1997;25(8):970–7.

    CAS  PubMed  Google Scholar 

  38. Sehrt D, Meineke I, Tzvetkov M, Gultepe S, Brockmoller J. Carvedilol pharmacokinetics and pharmacodynamics in relation to CYP2D6 and ADRB pharmacogenetics. Pharmacogenomics. 2011;12(6):783–95.

    Article  CAS  PubMed  Google Scholar 

  39. Kiang TK, Ensom MH, Chang TK. UDP-glucuronosyltransferases and clinical drug-drug interactions. Pharmacol Ther. 2005;106(1):97–132.

    Article  CAS  PubMed  Google Scholar 

  40. Franz C, Egger S, Born C, Bravo AR, Krähenbühl S. Potential drug-drug interactions and adverse drug reactions in patients with liver cirrhosis. Eur J Clin Pharmacol. 2012;68(2):179–88.

    Article  CAS  PubMed  Google Scholar 

  41. Tripathi D, Therapondos G, Lui HF, Stanley AJ, Hayes PC. Haemodynamic effects of acute and chronic administration of low-dose carvedilol, a vasodilating beta-blocker, in patients with cirrhosis and portal hypertension. Aliment Pharmacol Ther. 2002;16(3):373–80.

    Article  CAS  PubMed  Google Scholar 

  42. Hobolth L, Bendtsen F, Hansen EF, Moller S. Effects of carvedilol and propranolol on circulatory regulation and oxygenation in cirrhosis: a randomised study. Dig Liver Dis Off J Ital Soc Gastroenterol Ital Assoc Study Liver. 2014;46(3):251–6.

    CAS  Google Scholar 

  43. Caron G, Steyaert G, Pagliara A, Reymond F, Crivori P, Gaillard P, et al. Structure-lipophilicity relationships of neutral and protonated β-blockers, part I, intra- and intermolecular effects in isotropic solvent systems. Helv Chim Acta. 1999;82(8):1211–22.

    Article  CAS  Google Scholar 

  44. Bachmakov I, Werner U, Endress B, Auge D, Fromm MF. Characterization of beta-adrenoceptor antagonists as substrates and inhibitors of the drug transporter P-glycoprotein. Fundam Clin Pharmacol. 2006;20(3):273–82.

    Article  CAS  PubMed  Google Scholar 

  45. Fujimaki M, Murakoshi Y, Hakusui H. Assay and disposition of carvedilol enantiomers in humans and monkeys: evidence of stereoselective presystemic metabolism. J Pharm Sci. 1990;79(7):568–72.

    Article  CAS  PubMed  Google Scholar 

  46. von Mollendorff E, Reiff K, Neugebauer G. Pharmacokinetics and bioavailability of carvedilol, a vasodilating beta-blocker. Eur J Clin Pharmacol. 1987;33(5):511–3.

    Article  Google Scholar 

  47. Gehr TW, Tenero DM, Boyle DA, Qian Y, Sica DA, Shusterman NH. The pharmacokinetics of carvedilol and its metabolites after single and multiple dose oral administration in patients with hypertension and renal insufficiency. Eur J Clin Pharmacol. 1999;55(4):269–77.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Certara for providing academic research licenses for the software, Simcyp® and Phoenix WinNonLin®.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Fawad Rasool.

Ethics declarations

Funding

No source of funding was used in this study.

Conflict of interest

MFR, FK and SL have no potential conflicts of interest to declare.

Additional information

M. F. Rasool and F. Khalil contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasool, M.F., Khalil, F. & Läer, S. Optimizing the Clinical Use of Carvedilol in Liver Cirrhosis Using a Physiologically Based Pharmacokinetic Modeling Approach. Eur J Drug Metab Pharmacokinet 42, 383–396 (2017). https://doi.org/10.1007/s13318-016-0353-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-016-0353-2

Keywords

Navigation