Skip to main content
Log in

A comparative study on effect of metformin and metformin-conjugated nanotubes on blood glucose homeostasis in diabetic rats

  • Original Paper
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Diabetes mellitus is one of the most prevalent metabolic disorders. Carbon nanotubes have the advantage to cross the plasma membrane without damaging the cells, improving the biological effect of a drug and reducing its side effects. In the present study, the effect of metformin and metformin-conjugated nanotubes was investigated on blood glucose level in the streptozotocin-induced male diabetic rats. Diabetes in the animals was induced with a single dose of streptozotocin (60 mg/kg; i.p.) and after 3 days the blood glucose was analyzed. Animals showing fasting blood glucose higher than 250 mg/dL were considered as diabetic rats. The animals were treated with metformin and metformin-conjugated nanotubes (150 mg/kg; p.o.) daily and every 48-h for 1 week. Changes in animals’ serum blood glucose level were evaluated daily during the treatment period. The results of this study showed that metformin reduced blood glucose levels in diabetic animals. Metformin-conjugated nanotubes significantly reduced the blood glucose levels in diabetic rats (p < 0.01). There was no significant difference in blood glucose level between metformin and metformin-conjugated nanotubes groups (p > 0.05). However, when both formulations of metformin were administered every 48-h, metformin-conjugated nanotubes reduced glycaemia for a longer time than metformin alone (p < 0.001). This study showed that the metformin-conjugated nanotubes would be able to reduce the blood glucose, prolong drug delivery and efficacy duration in animals which were treated with metformin-conjugated nanotubes compared with metformin alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amorim MJ, Ferreira JP (2001) Microparticles for delivering therapeutic peptides and proteins to the lumen of the small intestine. Eur J Pharm Biopharm 52:39–44

    Article  CAS  PubMed  Google Scholar 

  • Bianco A, Kostarelos K, Prato M (2005) Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 9:674–679

    Article  CAS  PubMed  Google Scholar 

  • Bilous R, Donnelly R (2010) Handbook of diabetes, 4th edn. Blackwell science, UK

    Book  Google Scholar 

  • Cetin M, Atila A, Sahin S, Vural I (2013) Preparation and characterization of metformin hydrochloride loaded-Eudragit®RSPO and Eudragit®RSPO/PLGA nanoparticles. Pharm Dev Technol 18:570–576

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Chen S, Zhao X, Kuznetsova LV, Wong SS, Ojima I (2008) Functionalized single-walled carbon nanotubes as rationally designed vehicles for tumor-targeted drug delivery. J Am Chem Soc 130:16778–16785

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen G, He Y, Wu X, Zhang Y, Luo C, Jing P (2012) In vitro and in vivo studies of pirarubicin-loaded SWNT for the treatment of bladder cancer. Braz J Med Biol Res 45(8):771–776

    Article  PubMed Central  PubMed  Google Scholar 

  • Cheng JT, Huang CC, Liu IM, Tzeng TF, Chang CJ (2006) Novel mechanism for plasma glucose-lowering action of metformin in streptozotocin-induced diabetic rats. Diabetes 55:819–825

    Article  CAS  PubMed  Google Scholar 

  • Corti G, Cirri M, Maestrelli F, Mennini N, Mura P (2008) Sustained-release matrix tablets of metformin hydrochloride in combination with triacetyl-β-cyclodextrin. Eur J Pharm Biopharm 68:303–309

    Article  CAS  PubMed  Google Scholar 

  • Davidson MB, Peters AL (1997) An overview of metformin in the treatment of type 2 diabetes mellitus. Am J Med 102(1):99–110

    Article  CAS  PubMed  Google Scholar 

  • Douglas SM, Chou JJ, Shih WM (2007) DNA-nanotube-induced alignment of membrane proteins for NMR structure determination. Proc Natl Acad Sci USA 104:6644–6648

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • El-Atat F, McFarlane SI, Sowers JR (2004) Diabetes, hypertension, and cardiovascular derangements: pathophysiology and management. Curr Hypertens 6:215–223

    Article  Google Scholar 

  • Feazell RP, Nakayama-Ratchford N, Dai H, Lippard SJ (2007) Soluble single-walled carbon nanotubes as longboat delivery systems for platinum (IV) anticancer drug design. J Am Chem Soc 129:8438–8439

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fu K, Huang W, Lin Y, Riddle LA, Carroll DL, Sun YP (2001) Defunctionalization of functionalized carbon nanotubes. Nano Lett 1(8):439–441

    Article  CAS  Google Scholar 

  • Galindo-Rodriguez SA, Allemann E, Fessi H, Doelker E (2005) Polymeric nanoparticles for oral delivery of drugs and vaccines: a critical evaluation of in vivo studies. Crit Rev Ther Drug Carrier Syst 22:419–464

    Article  CAS  PubMed  Google Scholar 

  • Gelperina S, Kisich K, Iseman MD, Heifets L (2005) The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am J Respir Crit Care Med 172:1487–1490

    Article  PubMed Central  PubMed  Google Scholar 

  • Hundal RS, Inzucchi SE (2003) Metformin: new understandings, new uses. Drugs 63:1879–1894

    Article  CAS  PubMed  Google Scholar 

  • Khazaei A, Rad MN, Borazjani MK (2010) Organic functionalization of single-walled carbon nanotube with some chemotherapeutic agents as a potential method for drug delivery. Int J Nanomed 5:639–645

    Article  CAS  Google Scholar 

  • Kim WJ, Kang SO, Ah CS, Lee YW, Ha DH, Choi IS, Yun WS (2004) Functionalization of shortened SWCNTs using esterification. Bull Korean Chem Soc 25:1301–1302

    Article  CAS  Google Scholar 

  • Kumar SP, Prathibha D, Shankar NLG, Parthibarajan R, Mastyagiri L, Shankar M (2012) Pharmaceutical application of carbon nanotube-mediated drug delivery system. Int J Pharm Sci Nanotechnol 5:1685–1696

    Google Scholar 

  • Liu Z, Sun X, Nakayama-Ratchford N, Dai H (2007) Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano 1:50–56

    Article  PubMed  Google Scholar 

  • Liu Z, Davis C, Cai W, He L, Chen X, Dai H (2008) Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc Natl Acad Sci USA 105:1410–1415

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu H, He J, Tang J, Liu H, Pang P, Cao D et al (2010) Translocation of single-stranded DNA through single-walled carbon nanotubes. Science 327:64–67

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marathe PH, Wen Y, Norton J, Greene DS, Barbhaiya RH, Wilding IR (2000) Effect of altered gastric emptying and gastrointestinal motility on metformin absorption. Br J Clin Pharmacol 50:325–332

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marshall MW, Popa-Nita S, Shapter JG (2006) Measurement of functionalised carbon nanotube carboxylic acid groups using a simple chemical process. Carbon 44:1137–1141

    Article  CAS  Google Scholar 

  • Momoh MA, Kenechukwu FC, Attama AA (2013) Formulation and evaluation of novel solid lipid microparticles as a sustained release system for the delivery of metformin hydrochloride. Drug Deliv 20(3–4):102–111

    Article  CAS  PubMed  Google Scholar 

  • Muller J, Delos M, Panin N, Rabolli V, Huaux F, Lison D (2009) Absence of carcinogenic response to multiwall carbon nanotubes in a 2-year bioassay in the peritoneal cavity of the rat. Toxicol Sci 110:442–448

    Article  CAS  PubMed  Google Scholar 

  • Niyogi S, Hamon MA, Hu H, Zhao B, Bhowmik P, Sen R, Itkis ME, Haddon RC (2002) Chemistry of single-walled carbon nanotubes. Acc Chem Res 35:1105–1113

    Article  CAS  PubMed  Google Scholar 

  • Pantarotto D, Briand JP, Prato M, Bianco A (2004) Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem Commun 7(1):16–17

    Article  Google Scholar 

  • Piao J, Lee JE, Weon KY, Kim DW, Lee JS, Park JD et al (2009) Development of novel mucoadhesive pellets of metformin hydrochloride. Arch Pharm Res 32:391–397

    Article  CAS  PubMed  Google Scholar 

  • Pompeo F, Resasco DE (2002) Water solubilization of single-walled carbon nanotubes by functionalization with glucosamine. Nano Lett 2:369–373

    Article  CAS  Google Scholar 

  • Tripisciano C, Kraemer K, Taylor A, Borowiak-Palen E (2009) Single-wall carbon nanotubes based anticancer drug delivery system. Chem Phys Lett 478:200–205

    Article  CAS  Google Scholar 

  • Wang H, Wang J, Deng X, Sun H, Shi Z, Gu Z, Liu Y, Zhao Y (2004) Biodistribution of carbon single-wall carbon nanotubes in mice. J Nanosci Nanotechnol 4(8):1019–1024

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors report no conflicts of interest in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naser Mirazi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirazi, N., Shoaei, J., Khazaei, A. et al. A comparative study on effect of metformin and metformin-conjugated nanotubes on blood glucose homeostasis in diabetic rats. Eur J Drug Metab Pharmacokinet 40, 343–348 (2015). https://doi.org/10.1007/s13318-014-0213-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-014-0213-x

Keywords

Navigation