Skip to main content
Log in

Elsinoë punicae causing scab of pomegranates in South Africa does not cause disease on citrus

  • Research Note
  • Published:
Australasian Plant Pathology Aims and scope Submit manuscript

Abstract

Elsinoë punicae was shown to be responsible for a new disease on pomegranates in South Africa. This disease has been found in three of the pomegranate production areas in the Cape provinces, and is characterised by scab-like symptoms on the fruit and brown spots on the leaves. Representative isolates were characterised by morphology, cultural growth and sequencing of the ITS. Additionally, the LSU, rpb2 and TEF1-α gene regions were also sequenced for one representative isolate from pomegranate. Phylogenetic analyses of the four loci confirmed the isolates as E. punicae. RAPD analyses were also performed with three primers on 19 isolates of E. punicae. The analyses showed that E. punicae isolates clustered together with high support apart from the reference isolates of E. australis, E. fawcetti and E. australis pathotype jojoba. Pathogenicity tests were conducted with E. punicae and two reference isolates (E. australis, E. fawcetti - Citrus pathogens) on whole plant leaves and detached leaves of pomegranate and different citrus types [grapefruit, rough lemon, navels, Valencias and mandarins] in official quarantine facilities. The results confirmed E. punicae as a pathogen of pomegranate and not citrus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Ash GJ, Stodart B, Hyun JW (2012) Black scab of jojoba (Simmondsia chinensis) in Australia caused by a putative new pathotype of Elsinoë australis. Plant Dis 96:629–634

    Article  CAS  Google Scholar 

  • Bitancourt AA, Jenkins AE (1937) Sweet orange fruit scab caused by Elsinoë australis. J Agric Res 54:1–18

    Google Scholar 

  • Bitancourt AA, Jenkins AE (1940) New discoveries of Myriangiales in the Americas. In: Proceedings of the 8th american scientific congress, vol 3, pp 149–172

    Google Scholar 

  • Blasco J, Cubero S, Gómez-Sanchís J, Mira P, Moltó E (2009) Development of a machine for the automatic sorting of pomegranate (Punica granatum) arils based on computer vision. J Food Eng 90:27–34

    Article  Google Scholar 

  • Crous PW, AJL P, Baxter AP (2000) Phytopathogenic fungi from South Africa. University of Stellenbosch, Stellenbosch, South Africa

    Google Scholar 

  • Fan XL, Barreto RW, Groenewald JZ, Bezerra JDP, Pereira OL, Cheewangkoon R, Mostert L, Tian CM, Crous PW (2017) Phylogeny and taxonomy of the scab and spot anthracnose fungus Elsinoë (Myriangiales, Dothideomycetes). Stud Mycol 87:1–41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Farr DF, Rossman AY (2015) Fungal databases. Systematic mycology and microbiology laboratory, ARS, USDA. http://nt.ars-grin.gov/fungaldatabases

  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    Article  PubMed  CAS  Google Scholar 

  • Hyun JW, Timmer LW, Lee SC, Yun SH, Ko SW, Kim KS (2001) Pathological characterization and molecular analysis of Elsinoë isolates causing scab diseases of citrus in Jeju Island in Korea. Plant Dis 85:1013–1017

    Article  CAS  Google Scholar 

  • Hyun JW, Peres NA, Yi SY, Timmer LW, Kim KS, Kwon HM, Lim HC (2007) Development of PCR assays for the identification of species and pathotypes of Elsinoë causing scab on citrus. Plant Dis 91:865–870

    Article  CAS  Google Scholar 

  • Hyun JW, Yi SH, MacKenzie SJ, Timmer LW, Kim KS, Kang SK, Kwon HM, Lim HC (2009) Pathotypes and genetic relationship of worldwide collections of Elsinoë spp. causing scab diseases of citrus. Phytopathology 99:721–728

    Article  PubMed  CAS  Google Scholar 

  • Jayawardena RS, Ariyawansa HA, Singtripop C, Li YM, Yan J, LI X, Nilthong S, Hyde KD (2014) A re-assessment of Elsinoaceae (Myriangiales, Dothideomycetes). Phytotaxa 176:120–138

    Article  Google Scholar 

  • Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649

    Article  PubMed  PubMed Central  Google Scholar 

  • Lennox CL, Mostert L, Venter E, Laubscher W, Meitz-Hopkins JC (2018) First report of Coniella granati fruit rot and dieback on pomegranate in the western cape of South Africa. Plant Dis 102:821. https://doi.org/10.1094/PDIS-09-17-1387-PDN

    Article  Google Scholar 

  • Liu YJ, Whelen S, Hall BD (1999) Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. Mol Biol Evol 16:1799–1808

    Article  PubMed  CAS  Google Scholar 

  • Munhuweyi K, Lennox CL, Meitz-Hopkins JC, Caleb OJ, Opara UL (2016) Major diseases of pomegranate (Punica granatum L.), their causes and management - a review. Sci Hortic 211:126–139

    Article  Google Scholar 

  • Pomegranate Association of South Africa (POMASA) (2017) Pomegranate industry statistics Paarl, South Africa. http://www.hortgro.co.za/portfolio/pomegranates/

  • Raciborski M (1900) Parasitische Algen und Pilze Java'sI. Botanischen Institut zu Buitenzorg, Batavia

  • Rayner RW (1970) A mycological colour chart. Kew, surrey, England: CMI and British mycological society. 34 p, 17 sheets

  • Rehner SA, Samuels GJ (1994) Taxonomy and phylogeny of Gliocladium analysed from nuclear large subunit ribosomal DNA sequences. Mycol Res 98:625–634

    Article  CAS  Google Scholar 

  • Saccardo PA, Trotter A (1913) Supplementum Universale Pars IX. Sylloge Fungorum 22:1–1612

    Google Scholar 

  • Stover E, Mercure EW (2007) The pomegranate: a new look at the fruit of paradise. HortScience 42:1088–1092

    Google Scholar 

  • Sung GH, Sung JM, Hywel-Jones NL, Spatafora JW (2007) A multi-gene phylogeny of Clavicipitaceae (Ascomycota Fungi): identification of localized incongruence using a combinational bootstrap approach. Mol Phylogenet Evol 44:1204–1223

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A 101:11030–11035

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thomidis T (2014) Fruit rots of pomegranates (cv. wonderful) in Greece. Australas Plant Pathol 43:583–588

    Article  CAS  Google Scholar 

  • Timmer LW, Priest M, Broadbent P, Tan MK (1996) Morphological and pathological characterization of species of Elsinoë causing scab diseases of citrus. Phytopathology 86:1032–1038

    Article  Google Scholar 

  • Venter E, Lennox CL, Meitz-Hopkins JC (2017) First report of Cytospora punicae causing post-harvest fruit rot on pomegranate in South Africa. Plant Dis 101:631

    Article  Google Scholar 

  • Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4238–4246

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Viuda-Martos M, Fernández-López J, Pérez-Álvarez JA (2010) Pomegranate and its many functional components as related to human health: a review. Compr Rev Food Sci Food Saf 9:635–654

    Article  CAS  Google Scholar 

  • White TJ, Burns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, Inc., New York, pp 315–322

    Google Scholar 

Download references

Acknowledgements

Citrus Research International is thanked for financial support. The South African Department of Agriculture, Fisheries and Forestry and the Department of Plant Pathology, University of Stellenbosch are thanked for technical and administrative support. Dr. GJ Ash kindly provided an isolate of Elsinoë australis pathotype jojoba.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lizel Mostert.

Electronic supplementary material

Supplementary Fig. 1

Rapid Amplified Polymorphic DNA profiles of E. punicae, E. australis, E. fawcetii and E. australis pathotype jojoba. These fingerprinting profiles were generated using primers a) OPX-08, b) OPX-12, and c) OPX-17. The isolates depicted in this figure are as follow: 1) E. fawcetti CBS 139.25, 2) E. australis pathotype jojoba DAR77387, 3) E. australis CBS 230.64, 4) E. punicae isolates STE-U 7685, 5) STE-U 7686, 6) STE-U 7740, 7) STE-U 7745, 8) STE-U 7749, 9) STE-U 7759, 10) STE-U 7777 11) STE-U 7785. M is the 1 kb ladder (PDF 223 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carstens, E., Langenhoven, S.D., Pierron, R. et al. Elsinoë punicae causing scab of pomegranates in South Africa does not cause disease on citrus. Australasian Plant Pathol. 47, 405–411 (2018). https://doi.org/10.1007/s13313-018-0572-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13313-018-0572-x

Keywords

Navigation