Skip to main content
Log in

Analysis of population genetic structure of Iranian Fusarium oxysporum f. sp. lentis isolates using microsatellite markers

  • Original Paper
  • Published:
Australasian Plant Pathology Aims and scope Submit manuscript

Abstract

Lentil (Lens culinaris Medik.) is an important widely cultivated food legume crop in Iran. Wilt disease caused by Fusarium oxysporum f.sp. lentis has been observed with high losses in some of cultivated areas during recent years. Simple sequence repeat (SSR) were used to determine the genetic structure, and estimate genetic diversity in 101 of Fusarium oxysporum f. sp. lentis (FOL) isolates from five counties in Ilam provinces of western Iran (Sarableh, Sirvan, Ivan, Badreh, Darehshahr). A set of five microsatellite primer pairs revealed a total of 10 alleles each locus across the five populations; the number of alleles varied from 6 to 9 for each population. A low level of genetic variability was observed among FOL isolates in the region. Genetic diversity was low (H = 0.234) within populations with corresponding high average gene flow and low genetic distances between populations. The smallest genetic distance was observed between isolates from Sirvan and Badreh. Observed allele number (Na) and effective numbers (Ne) of alleles were higher in Ivan in comparison to other populations. The number of (H) and (I) were also higher in Ivan (H = 0.301; I = 0.442). The total gene diversity (Ht) and gene diversities between subpopulation (Hs) were estimated 0.267 and 0.233, respectively. Gene diversity attributable to differentiation among populations (Gst) was 0.126, while gene flow (Nm) was 3.439. Cluster analysis based on UPGMA showed the lowest genetic distance between Sirvan and Badrah, than between Sarableh and Sirvan. The dendrogram indicated a clear break between the population from Darehshahr and the four remaining populations. Results from this study will be useful in breeding for Crown and root rot resistant cultivars and developing necessary control measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbas A (1995) Variation in some cultural and physiological characters and host/pathogen interaction of Fusarium oxysporum f. sp. lentis, and inheritance of resistance to lentil wilt in Syria. Ph.D. Thesis, Faculty of Agriculture, University of Aleppo, Syria

  • Abd-Elsalam KA, Omar MR, Migueli Q, Nirenberg HI (2004) Genetic characterization of Fusarium oxysporum f. Sp. vasinfectum isolates by random amplification of polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP). J Plant Dis and Protec 111:534–544

    CAS  Google Scholar 

  • Agrios GN (1997) Plant pathology 4th edition. Academic Press Inc, San Diego

    Google Scholar 

  • Baayen RP, O'Donnell K, Bonants PJM, Cigelnik E, Kroon LPNM, Roebroeck EJA, Waalwijk C (2000) Gene genealogies and AFLP analyses in the Fusarium oxysporum complex identify monophyletic and nonmonophyletic formae speciales causing wilt and rot disease. Phytopathol 90:891–900

  • Barnes I, Nakabonge G, Roux J, Wingfield BD, Wingfield MJ (2005) Comparison of populations of the wilt pathogen Ceratocystis albifundus in South Africa and Uganda. Plant Pathol 54:189–195

    Article  CAS  Google Scholar 

  • Barnett HL, Hunter BB (1972) Illustrated genera of imperfect fungi. Burgess, Publication Company, p 241

  • Barres B, Dutech C, Andrieux A, Caron H, Pinon J, Frey P (2006) Isolation and characterization of 15 microsatellite loci in the poplar rust fungus, Melampsora larici-populina, and cross-amplification in related species. Mol Ecol Not 6:60–64

    Article  CAS  Google Scholar 

  • Barve MP, Haware MP, Sainani MN, Ranjekar PK, Gupta VS (2001) Potential of microsatellites to distinguish four races of Fusarium oxysporum f. sp. ciceri prevalent in India. Theo App Gen 102:138–147

    Article  CAS  Google Scholar 

  • Bayraktar H, Dolar FS (2008) Genetic diversity of wilt and root rot pathogens of chickpea. Turk J Ag 33:1–10

    Google Scholar 

  • Bayraktar H, Türkkan M, Dolar FS (2010) Characterization of Fusarium oxysporum f. sp. cepae from onion in Turkey based on vegetative compatibility and rDNA RFLP analysis. J Phytopathol 10:1439–0434

    Google Scholar 

  • Belabid L, Baum M, Fortas Z, Bouzand Z, Eujal I (2004) Pathogenic and genetic characterization of Algerian isolates if Fusarium oxysporum f. sp. lentis by RAPD and AFLP analysis. Af J Biotech 3:25–31

    Article  CAS  Google Scholar 

  • Beniwal SPS, Bayaa B, Weigand S, Makkouk K, Saxena MC (1993) Field guide to lentis diseases and insect pests. International Centre for Agricultural Research in the Dry Areas, Aleppo, p. 106

    Google Scholar 

  • Bentley S, Pegg KG, Dale JL (1995) Genetic variation among a worldwide collection of isolates of Fusarium oxysporum f. sp. cubense analyzed by RAPD-PCR fingerprinting. Mycol Res 99:1378–1384

    Article  CAS  Google Scholar 

  • Bhalla MK, Nozzolillo C, Schneider E (1992) Observation on the responses of lentil root cells to hypha of Fusarium oxysporum. J Phytopathol 135:335–341

    Article  Google Scholar 

  • Bogale M, Wingfield BD, Wingfield MJ, Steenkamp ET (2005) Simple sequence repeats markers for species in the Fusarium oxysporum complex. Mol Ecol Notes 5:622–624

    Article  CAS  Google Scholar 

  • Bogale M, Wingfield BD, Wingfield M, Steenkamp ET (2006) Characterization of Fusarium oxysporum isolates from Ethiopia using AFLP, SSR and DNA sequence analyses. Fungal Divers 23:51–66

    Google Scholar 

  • Britz H, Coutinho TA, Wingfield BD, Wingfield MJ (2002) Sequence characterized amplified polymorphic markers for the pitch canker pathogen Fusarium circinatum. Mol Ecol Notes 3:577–580

    Article  Google Scholar 

  • Burgess T, Wing M, Wing B (2001) Simple sequence repeat markers distinguish among morphotypes of Sphaeropsis sapinea. Appl Environ Microbiol 67:354–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaudhary RG, Amarjit K (2002) Wilt disease as a cause of shift from lentis cultivation in Sangod tehsil of Kota Rajasthan. Ind J Pulse Res 15:193–194

    Google Scholar 

  • Clulow SA, Lewis BC, Matthews P (1991) A pathotype classification for Mycosphaerella pinodes. J Phytopathol 131:322–332

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

  • Enjalbert J, Duan X, Leconte M, Hovmøller MS, De Vallavielle-Pope C (2005) Genetic evidence of local adaptation of wheat yellow rust (Puccinia striiformis f. sp. tritici) within France. Mol Ecol 14:2065–2073

    Article  CAS  PubMed  Google Scholar 

  • Groenewald S, Berga NVD, Marasasb WFO, Viljoen A (2006) The application of high-throughput AFLP’s in assessing genetic diversity in Fusarium oxysporum f. sp. cubense. Mycol Res 110:297–305

    Article  CAS  PubMed  Google Scholar 

  • Haware MP, Nene YL, Natarajan M (1996) Survival of Fusarium oxysporum f. sp. ciceri. Plant Dis 66:809–810

    Article  Google Scholar 

  • Hawker LE (1950) Physiology of fungi. University of London Press Ltd, London

    Google Scholar 

  • Jalali BL, Chand H (1992). Disease of cereals and pulses Chickpea wilt Plant disease of International importance Vol I. In: Singh US, Mukhtopadhyay AN, Kumar J, Chaube HS (eds) Prentice Hall Englewood, Cliff NJ pp 420–444

  • Jarne P, Lagoda PJL (1996) Microsatellites from molecules to populations and back. Trend Ecol Evol 11:424–429

    Article  CAS  Google Scholar 

  • Jens CF, Thrane V, Mathur SB (1991) An illustrated manual on identification of some seed-borne Aspergilli Fusaria Penicillia and their mycotoxins. Danish government institute of seed pathology for developing countries. Ryvans Alle 78 DK 2900 Hellerue Denmark

  • Jimenez-Gasco MM, Perez-Artes E, Jimenez-Diaz RM (2001) Identification of pathogenic races 0, 1B/C, 5 and 6 of Fusarium oxysporum f. Sp. ciceri with random amplified polymorphic DNA (RAPD). Eur J Plant Pathol 107:237–248

    Article  CAS  Google Scholar 

  • Keller SM, McDermott JM, Pettway RE, Wolfe MS, McDonald BA (1997) Gene flow and sexual reproduction in the wheat glume blotch pathogen Phaeosphaeria nodorum (anamorph Stagonosporanodorum). Phytopathol 87:353-358

  • Khare MN (1980) Wilt of lentis. Jawaharlal Nehru Krishi Vishwa Vidyalaya Jabalpur MP India, p 155

  • Kiprop EK, Baudoin JP, Mwang’ombe AW, Kimani PM, Mergeai G, Maquet A (2002) Characterization of Kenyan isolates of Fusarium udum from pigeon pea [Cajanus cajan (L) Millsp] by cultural characteristics aggressiveness and AFLP analysis. J Phytopathol 150:517–525

    Article  CAS  Google Scholar 

  • Kistler HC (2001) Evolution in host specificity in Fusarium oxysporum. In: Summerell BA, Leslie JF, Backhouse D, Bryden WL, Burgess LW (eds) Fusarium. APS Press, St Paul

    Google Scholar 

  • Kosman E, Leonard J (2005) Similarity coefficients for molecular markers in studies of genetic relationships between individuals for haploid diploid and polyploid species. Mol Ecol 14:415–424

    Article  CAS  PubMed  Google Scholar 

  • Leslie JF, Summerell BA, Bullock S (2006) The Fusarium laboratory manual. Wiley-Blackwell, New York, p. 388

  • McDermott JM, McDonald BA (1993) Gene flow in plant pathosystems. Annu Rev Phytopathol 31:353–373

    Article  Google Scholar 

  • McDonald BA (1997) The population genetic of fungi: tools and techniques. Phytopathol 87:448–453

    Article  CAS  Google Scholar 

  • Migheli Q, González-Candelas L, Dealessi L, Camponogara A, Ramón-Vidal D (1998) Transformants of T. longibrachiatum overexpressing the β-1 4-endoglucanase gene egl1 show enhanced biocontrol of Pythium ultimum on cucumber. Phytopathol 88:673–677

    Article  CAS  Google Scholar 

  • Miller JJ (1946) Taxonomy in Fusarium with particular reference to section Elegans. Can J Res 24:213–223

    Article  Google Scholar 

  • Mohammadi M, Aminipour M, Banhashemi Z (2004) Isozyme analysis and soluble mycelial protein pattern in Iranian isolates of several formae speciales of Fusarium oxysporum. J Phytopathol 152:267–276

    Article  CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mwang Òmbe AW, Thiong G, Olubayo FM, Kiprop EK (2007) DNA microsatellite analysis of Kenyan isolates of Rhizoctonia solani from common bean (Phaseolus vulgaris L.). J Plant Pathol 6:66–71

    Article  Google Scholar 

  • Nasir M, Hoppe HH (1991) Studies on pathotype differentiation within Mycosphaerella pinodes (Berk, Bloxan) Vestergren a component of the Ascochyta disease complex of peas (Pisum sativum). Zeit Fur Pflam Kran Pflan 98:619–626

    Google Scholar 

  • Nei M (1973) Analysis of the genetic diversity in subdivided populations. Proc Natl Acad Sci U S A 70:3321–3323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. G E N 89:583–590

    CAS  Google Scholar 

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonuclease. Proc Natl Acad Sci U S A 76:5269–5273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson PE, Toussoun TA, Marasas WFO (1983) Fusarium species: An illustrated manual for identification. The Pennsylvania State University Press University Park, p 193

  • Nourollahi K, Javannikkhah M, Naghavi MR, Lichtenzveig J, Okhovat SM, Richard P, Oliver RP, Ellwood SR (2011) Genetic diversity and population structure of Ascochyta rabiei from the western Iranian Ilam and Kermanshah provinces using MAT and SSR markers. Mycol Prog 10:1–7

    Article  Google Scholar 

  • O’Donnell K (2000) Molecular phylogeny of the Nectria haematococca-Fusarium solani species complex. Mycol 92:919–938

    Article  Google Scholar 

  • Ouellet T, Seifert KA (1993) Genetic characterization of Fusarium graminearum strains using RAPD and PCR amplification. Phytopathol 83:1003–1007

    Article  CAS  Google Scholar 

  • Pasquali M, Acquadro A, Balmas V, Migheli Q, Garibaldi A, Gullino ML (2003) RAPD characterization of Fusarium oxysporum isolates pathogenic on Argyranthemum frutescens L. J Phytopathol 151:30–35

    Article  CAS  Google Scholar 

  • Peakall R, Smouse PE (2006) GenAlEx 6: genetic analysis in excel population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Roldan-Ruiz I, Dendauw JE, Vanbockstaele E, Depicker A, Loose M (2000) AFLP markers reveals high polymorphic rates in ryegrasses (Lolium spp.). Mol Breed 6:125–126

    Article  CAS  Google Scholar 

  • Rolhf FJ (1990) NTSYSPc Numerical taxonomy and multivariant analysis system Version 202 Applied Biostatistics. New York

  • Saharan MS, Naef A (2008) Detection of genetic variation among Indian wheat head scab pathogens (Fusarium spp. /isolates) with microsatellite markers. Crop Protect 27:1148–1154

  • Sanders IR (2002) Ecology and evolution of multigenomic arbuscular mycorrhizal fungi. Am Nat 160:8–41

    Article  Google Scholar 

  • Sarker A, Erskine W (2006) Recent progress in the ancient lentil. J Ag Sci 144:19–29

    Article  Google Scholar 

  • Shah D, Bergstrom GC, Ueng PP (1995) Initiation of septoria nodorum blotch epidemics in winter wheat by seedborne Stagonospora nodorum. Phytopathol 85:452–457

    Article  Google Scholar 

  • Sirjusingh C, Kohn LM (2001) Characterization of microsatellite in the fungal plant pathogen S. sclerotiorum. Mol Ecol Notes 1:267–269

    Article  CAS  Google Scholar 

  • Sivaramakrishnan S, Kannan S, Singh SD (2002a) Genetic variability of Fusarium wilt pathogen isolates of chickpea (Cicer arietinum L) assessed by molecular markers. Mycopathol 155:171–178

    Article  CAS  Google Scholar 

  • Sivaramakrishnan S, Kannan S, Singh SD (2002b) Detection of genetic variability in Fusarium udum using DNA markers. Ind J Phytopathol 55:258–263

    CAS  Google Scholar 

  • Slippers B, Burgess T, Wingfield BD, Crous PW, Coutinho TA, Wingfield MJ (2004b) Development of simple sequence repeat markers for Botryosphaeria spp. with Fusicoccum anamorphs. Mol Ecol Notes 4:675–677

    Article  CAS  Google Scholar 

  • Sneath PHA, Sokal RR (1973) Numerical taxonomy: the principles and practice of numerical classification. WH Freeman and Company, San Francisco, p. 573

    Google Scholar 

  • Snyder WC, Hansen HN (1940) The species concept in Fusarium. Am J Bot 27:64–67

    Article  Google Scholar 

  • Stewart JE, Kim M, James RL, Dumroese RK, Klopfenstein NB (2006) Molecular characterization of Fusarium oxysporum and Fusarium commune isolates from a conifer nursery. Phythopathol 96:1124–1133

    Article  CAS  Google Scholar 

  • Tenzer I, Ivanissevich SD, Morgante M, Gessler C (1999) Identification of microsatellite markers and their application to population genetics of Venturia inaequalis. Phytopathol 89:748–753

    Article  CAS  Google Scholar 

  • Tosi L, Cappelli C (2001) First report of Fusarium oxysporum f. Sp. lentis of lentis in Italy. Plant Dis 85:562

    Article  Google Scholar 

  • Varshney RK, Chabane K, Hendre PS, Aggarwal RK, Graner A (2007) Comparative assessment of EST-SSR; EST-SNP and AFLP markers for evaluation of genetic diversity and conservation of genetic resources using wild cultivated and elite barleys. Plant Sci 173:638–649

    Article  CAS  Google Scholar 

  • Welsh J, Petersen C, Mc Clelland M (1991) Polymorphisms generated by arbitrary primed PCR in mouse: application to strain identification and genomic mapping. Nucleic Acids Res 19:303–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphism amplified by arbitrary primers as useful genetic markers. Nucleic Acids Res 18:6531–6535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woo SL, Zoina A, Sorbo G, Lorito MD, Scala NBF, Noviello C (1996) Characterization of Fusarium oxysporum f. sp. phaseoli by pathogenic races VCGs RFLPs and RAPD. Phytopathol 86:966–973

    Article  CAS  Google Scholar 

  • Yadav SS, McNeil DL, Stevenson PS (2007) Lentis an Ancient Crop for Modern Times. PO Box 17 3300 AA Dordrecht the Netherlands, p 443

  • Yeh F, Yang R, Boyle T (1999) POPGENE version 131 Microsoft Windows-based software for population genetics analysis. University of Alberta and Centre for International Forestry Research Alberta

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khoshnood Nourollahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nourollahi, K., Madahjalali, M. Analysis of population genetic structure of Iranian Fusarium oxysporum f. sp. lentis isolates using microsatellite markers. Australasian Plant Pathol. 46, 35–42 (2017). https://doi.org/10.1007/s13313-016-0458-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13313-016-0458-8

Key words

Navigation