Skip to main content
Log in

Fungal contaminants of stored wheat vary between Australian states

  • Original Paper
  • Published:
Australasian Plant Pathology Aims and scope Submit manuscript

Abstract

A survey was undertaken to determine the mycoflora associated with stored wheat in four states across Australia including Western Australia, South Australia, Victoria and New South Wales. A total of 482 fungal isolates from 15 genera were isolated. The most common genera isolated were Alternaria spp., Aspergillus sp., Aureobasidium sp., Cladosporium spp., Drechslera sp., Fusarium spp., Mucor sp., Nigrospora sp., Penicillium sp., Rhizopus sp., Stemphylium sp., Eutiarosporella spp., Ulocladium sp., Epicoccum sp., and an undescribed genus from the Hypocreales. Diversity profiling also identified fungi that were not isolated using traditional methods including Paecilomyces spp., Dendryphiella and Cryptococcus. The results indicate that the mycoflora of stored wheat varies between Australian grain growing regions, and that diversity profiling analysis identifies different fungal contaminants compared to traditional methods. This study also revealed that some pathogens of high risk to humans (e.g. Cryptococcus) may occur with a high frequency in wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andjic V, Barber PA, Carnegie AJ, Hardy GSJ, Wingfield MJ, Burgess TI (2007) Phylogenetic reassessment supports accommodation of Phaeophleospora and Colletogloeopsis from eucalypts in Kirramyces. Mycol Res 111:1184–1198

    Article  CAS  PubMed  Google Scholar 

  • Barnett HL, Hunter BB (1972) Illustrated genera of imperfect fungi, 3rd edn. Burgess Pub. Co, Minnesota

    Google Scholar 

  • Berghofer LK, Hocking AD, Miskelly D, Jansson E (2003) Microbiology of wheat and flour milling in Australia. Int J Food Microbiol 85:137–149

    Article  PubMed  Google Scholar 

  • Blaney BJ, Williams KC (1991) Effective use in livestock feeds of mouldy and weather-damaged grain containing mycotoxins-case histories and economic assessments pertaining to pig and poultry industries of Queensland. Crop Pasture Sci 42:993–1012

    Article  Google Scholar 

  • Booth C (1971) The genus Fusarium. Commonwealth Mycological Institute, Kew, London

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Gordon JI (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical analysis and interpretation. Primer-E Ltd, Plymouth

    Google Scholar 

  • Domsch KH, Gams W, Anderson TH (1980) Paecilomyces. Academic Press, London, Compendium of Soil Fungi

    Google Scholar 

  • Ellis MB (1971) Dematiaceous Hyphomycetes. Mycological Institute, Kew

    Google Scholar 

  • Flannigan B (1978) Primary contamination of barley and wheat grain storage fungi. Trans Br Mycol Soc 71:37–42

    Article  Google Scholar 

  • Gadanho M, Almeida JM, Sampaio JP (2003) Assessment of yeast diversity in a marine environment in the south of Portugal by microsatellite-primed PCR. Antonie Van Leeuwenhoek 84:217–227

    Article  CAS  PubMed  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  CAS  PubMed  Google Scholar 

  • Ghannoum MA, Ibrahim AS, Fu Y, Shafiq MC, Edwards JE, Criddle RS (1992) Susceptibility testing of Cryptococcus neoformans: a microdilution technique. J Clin Microbiol 30:2881–2886

    CAS  PubMed  PubMed Central  Google Scholar 

  • González H, Martínez EJ, Pacin A, Resnik SL (1999) Relationship between Fusarium graminearum and Alternaria alternata contamination and deoxynivalenol occurrence on Argentinian durum wheat. Mycopathologia 144:97–102

    Article  Google Scholar 

  • Hammer Ø, Harper DAT (2006) Paleontological data analysis. Blackwell Publishing, Malden

    Google Scholar 

  • Hammer Ø, Harper DAT, Ryan D (2001) PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica 4:9. http://palaeo-electronica.org/2001_1/past/issue1_01.htm. Accessed 9 June 2016

  • Hernandez-Saavedra NY, Hernandez-Saavedra D, Ochoa JL (1992) Distribution of Sporobolomyces (Kluyver et van Niel) genus in the western coast of Baja California Sur, Mexico. Syst Appl Microbiol 15:319–322

    Article  Google Scholar 

  • Krebs CJ (1999) Ecological methodology. Addison-Wesley Longman, Menlo Park

    Google Scholar 

  • Kulik T, Treder K, Załuski D (2014) Quantification of Alternaria, Cladosporium, Fusarium and Penicillium verrucosum in conventional and organic grains by qPCR. J Phytopathol 163:522–528

    Article  Google Scholar 

  • Libkind D, Brizzio S, Ruffini A, Gadanho M, van Broock M, Sampaio JP (2003) Molecular characterization of carotenogenic yeasts from aquatic environments in Patagonia, Argentina. Antonie Van Leeuwenhoek 84:313–322

    Article  CAS  PubMed  Google Scholar 

  • Lindsberg PJ, Pieninkeroinen I, Valtonen M (1997) Meningoencephalitis caused by Cryptococcus macerans. Scand J Infect Dis 29:430–435

    Article  CAS  PubMed  Google Scholar 

  • Marasas WF (1995) Fumonisins: their implications for human and animal health. Nat Toxins 3:193–198

    Article  CAS  PubMed  Google Scholar 

  • Michaelis KC, Gessner RV, Romano MA (1987) Population genetics and systematics of marine species of Dendryphiella. Mycologia 79:514–518

    Article  Google Scholar 

  • Montes MJ, Belloch C, Galiana M, Garcia MD, Andrés C, Ferrer S, Torres-Rodriguez JM, Guinea J (1999) Polyphasic taxonomy of a novel yeast isolated from antarctic environment; description of Cryptococcus victoriae sp. nov. Syst Appl Microbiol 22:97–105

    Article  CAS  PubMed  Google Scholar 

  • Mostafa A, Kazem S, Mohammad S, Rokouei M (2011) Determination of wheat grain mycoflora in store-pits Golestan Province. Aust J Basic Appl Sci 5:1070–1076

    Google Scholar 

  • Murray GM, Brennan JP (2009) Estimating disease losses to the Australian wheat industry. Australas Plant Pathol 38:558–570

    Article  Google Scholar 

  • Nelson PE, Toussoun TA, Marasas WFO (1983) Fusarium species: an illustrated manual for identification. Penn State University Press, University Park, PA

    Google Scholar 

  • Nicolaisen M, Justesen AF, Knorr K, Wang J, Pinnschmidt HO (2014) Fungal communities in wheat grain show significant co-existence patterns among species. Fungal Ecol 11:145–153

    Article  Google Scholar 

  • Patriarca A, Azcarate MP, Terminiello L, Pinto VF (2007) Mycotoxin production by Alternaria strains isolated from Argentinean wheat. Int J Food Microbiol 119:219–222

    Article  CAS  PubMed  Google Scholar 

  • Pitt J, Hocking AD (2003) Current mycotoxin issues in Australia and Southeast Asia. Microbiol Aust 24(3):4–6

    Google Scholar 

  • Pitt J, Hocking AD (2006) Mycotoxins in Australia: biocontrol of aflatoxin in peanuts. Mycopathologia 162:233–243

    Article  CAS  PubMed  Google Scholar 

  • Riba A, Mokrane S, Mathieu F, Lebrihi A, Sabaou N (2008) Mycoflora and ochratoxin Aproducing strains of Aspergillus in Algerian wheat. Int J Food Microbiol 122:85–92

    Article  CAS  PubMed  Google Scholar 

  • Sakalidis ML, Hardy GES, Burgess TI (2011) Endophytes as potential pathogens of the baobab species Adansonia gregorii: a focus on the Botryosphaeriaceae. Fungal Ecol 4:1–14

    Article  Google Scholar 

  • Shipton W, Chambers S (1966) The internal microflora of wheat grains in Western Australia. Anim Prod Sci 6(23):432–436

    Article  Google Scholar 

  • Wang J, Huang Y, Fang M, Zhang Y, Zheng Z, Zhao Y, Su W (2002) Brefeldin a, a cytotoxin produced by Paecilomyces sp. and Aspergillus clavatus isolated from Taxus mairei and Torreya grandis. FEMS Immunol Med Microbiol 34:51–57

    Article  CAS  PubMed  Google Scholar 

  • Webley D, Jackson K, Mullins J, Hocking A, Pitt J (1997) Alternaria toxins in weather-damaged wheat and sorghum in the 1995-1996 Australian harvest. Aust J Agric Res 48:1249–1256

    Article  CAS  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: Guide Methods Appl 18:315–322

    Google Scholar 

  • Yang Y, Li Liu D, Anwar MR, Zuo H, Yang Y (2014) Impact of future climate change on wheat production in relation to plant-available water capacity in a semiaridenvironment. Theor Appl Climatol 115:391–410

    Article  Google Scholar 

  • Ying SH, Feng MG (2004) Relationship between thermotolerance and hydrophobin-like proteins in aerial conidia of Beauveria bassiana and Paecilomyces fumosoroseus as fungal biocontrol agents. J Appl Microbiol 97:323–331

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The first author would like to thank Murdoch University and the Libyan government for financial support. We also acknowledge the assistant of Mrs. Diane White and A/Professor Treena Burgess for assistance with the ITS sequencing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. L. Bayliss.

Electronic supplementary material

ESM 1

(DOCX 100 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barkat, E.H., Hardy, G.E.S.J., Ren, Y. et al. Fungal contaminants of stored wheat vary between Australian states. Australasian Plant Pathol. 45, 621–628 (2016). https://doi.org/10.1007/s13313-016-0449-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13313-016-0449-9

Keywords

Navigation