Skip to main content
Log in

A novel QTL governing resistance to stem rot disease caused by Sclerotium rolfsii in peanut

  • Original Paper
  • Published:
Australasian Plant Pathology Aims and scope Submit manuscript

Abstract

Stem rot disease caused by Sclerotium rolfsii is limiting the peanut production worldwide. Linkage analysis and QTL mapping for resistance to stem rot disease was done in a biparental F2 population developed from a susceptible cultivar GG 20 and a resistant interspecific prebreeding line CS 19 using 1980 simple sequence repeat markers. Only 25.5 % primers were found polymorphic between parents. Among polymorphic primers 23 could differentiate homozygotes and F1 heterozygotes and were carried forward for the genotyping of 178 F2 progenies. Out of which 12 primers segregated in expected 1:2:1 ratio while rest segregated in a distorted ratio. Upon comparison with the international consensus map of peanut 22 markers are found anchored markers of 20 linkages except AHS1480. In this study a total map distance of 558.74 cM is covered by 12 marker loci in two linkage groups. Here we report AHS1480 as a new marker to the existing international consensus peanut linkage map. In this studies a major QTL qstga01.1 is identified for resistance to stem rot disease in peanut which is contributed by resistant parent. Both flanking markers GM2350 and TC4H02 are tightly linked to the major QTL. To our understanding this is the first report on QTL for resistance to stem rot disease in peanut.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alheit KV, Reif JC, Maurer HP, Hahn V, Weissmann EA, Miedaner T, Wurschum T (2011) Detection of segregation distortion loci in triticale (× Triticosecale Wittmack) based on a high-density DArT marker consensus genetic linkage map. BMC Genomics 12:380

  • Benbouza H, Jacquemin JM, Baudoin JP, Mergeai G (2006) Optimization of a reliable, fast, cheap and sensitive silver staining method to detect SSR markers in polyacrylamide gels. Biotechnol Agron Soc Environ 10(2):77–81

    CAS  Google Scholar 

  • Bera SK, Bhatt NS (2011) Study on stem rot resistance in groundnut (Arachis hypogaea L.) using RAPD markers, proc., National Seminar on Contemporary Approaches to Crop Improvement, April 22–23 2011 at UAS. GKVK Campus, Bangalore, p. 51

  • Bera SK, Radhakrishnan T, Paria P, Rathnakumar AL, Murthy TGK (2005) Groundnut (Arachis hypogaea L.) germplasm with multiple disease resistance and high harvest index. Indian J Genet 65(1):73–74

    Google Scholar 

  • Bera SK, Kamdar JH, Maurya AK, Dash P (2014a) Molecular diversity and association of simple sequence repeat markers with bud necrosis disease in interspecific breeding lines and cultivars of peanut (Arachis hypogaea L.). Aust J Crop Sci 8(5):771–780

  • Bera SK, Kasundra SV, Kamdar JH, Ajay BC, Lal C, Thirumalasmy PP, Dash P, Maurya AK (2014b) Variable response of interspecific breeding lines of groundnut to Sclerotium rolfsii infection under field and laboratory conditions. Electronic Journal of. Plant Breed 5:22–29

  • Bera SK, Radhakrishnan T, Kasundra SV, Kamdar JH (2016) Phenotyping technique for stem rot disease in groundnut under field conditions. ICAR-Directorate of Groundnut Research, PB No. 5, Ivnagar Road, Junagadh - 362001, Gujarat, India, Technical Bulletin No. 1/2016, pp 24

  • Bowen KL, Hagan AK, Weeks JR (1992) Seven years of Sclerotium rolfsii in peanut fields: yield losses and means of minimization. Plant Dis 76:982–985

    Article  Google Scholar 

  • Burow MD, Simpson CE, Starr JL, Paterson AH (2001) Transmission genetics of chromatin from a synthetic amphidiploid to cultivated peanut (A. hypogaea L.): broadening the gene pool of a monophyletic polyploid species. Genetics 159:823–837

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chu Y, Holbrook CC, Timper P, Ozias-Akins P (2007) Development of a PCR-based molecular marker to select for nematode resistance in peanut. Crop Sci 47(2):841–845

    Article  CAS  Google Scholar 

  • Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196

    Article  CAS  Google Scholar 

  • Cuc LM, Mace ES, Crouch JH, Quang VD, Long TD, Varshney RK (2008) Isolation and characterization of novel microsatellite markers and their application for diversity assessment in cultivated groundnut (Arachis hypogaea L.) BMC Plant Biol 8(1):55

  • Doyle JJ, Doyle JL (1990) Isolation of Plant DNA from fresh plant tissue. Focus 12:13–15

  • FAOSTAT (2015) Food and agricultural organization of the united nation, FAO statistical database. http://faostat.fao.org/faostat/collections?subset=agriculture

  • Ferguson ME, Burow MD, Schulze SR, Bramel PJ, Paterson AH, Kresovich S, Mitchell S (2004) Microsatellite identification and characterization in peanut (A. hypogaea L.) Theor Appl Genet 108(6):1064–1070

    Article  CAS  PubMed  Google Scholar 

  • Gautami B, Pandey MK, Vadez V, Nigam SN, Ratnakumar P, Krishnamurthy L, Radhakrishnan T, Gowda MVC, Narasu ML, Hoisington DA, Knapp SJ, Varshney RK (2012a) Quantitative trait locus analysis and construction of consensus genetic map for drought tolerance traits based on three recombinant inbred line populations in cultivated groundnut (Arachis hypogaea L.) Mol Breed 30(2):757–772

  • Gautami B, Foncéka D, Pandey MK, Moretzsohn MC, Sujay V, Qin H, Hong Y, Faye I, Chen X, BhanuPrakash A, Shah TM, Gowda MV, Nigam SN, Liang X, Hoisington DA, Guo B, Bertioli DJ, Rami JF, Varshney RK (2012b) An international reference consensus genetic map with 897 marker loci based on 11 mapping populations for tetraploid groundnut (Arachis hypogaea L.). PLoS One 7:41213

  • Gimenes MA, Hoshino AA, Barbosa AV, Palmieri DA, Lopes CR (2007) Characterization and transferability of microsatellite markers of the cultivated peanut (Arachis hypogaea). BMC Plant Biol 7:9

  • Gorbet DW, Kucharek TA, Shokes FM, Brenneman TB (2004) Field evaluations of peanut germplasm for resistance to stem rot caused by Sclerotium rolfsii. Peanut Sci 31(2):91–95

    Article  Google Scholar 

  • Goswami BR, Kamdar JH, Bera SK (2013a) Molecular diversity and association of simple sequence repeat markers with kernel mass in cultivated groundnut (Arachis hypogaea L.) Aust J Crop Sci 7:1152–1159

    Google Scholar 

  • Goswami BR, Bera SK, Kamdar JH, Kasundra S, Dash P and Maurya AK (2013b) Molecular diversity and association of SSR markers with tolerance to salinity in groundnut. Proc., of National Conference of Plant Physiology on “Current Trends in Plant Biology Research”, 13–16, December, 2013, Junagadh, Gujarat, pp 727

  • Liu B (1998) Statistical genomics: linkage, mapping, and QTL analysis. CRC Press, New York

  • He G, Meng R, Newman M, Gao G, Pittman RN, Prakash CS (2003) Microsatellites as DNA markers in cultivated peanut (Arachis hypogaea L.) BMC Plant Biol 3(1):3

    Article  PubMed  PubMed Central  Google Scholar 

  • Herselman L, Thwaites R, Kimmins FM, Courtois B, Van der Merwe PJA, Seal SE (2004) Identification and mapping of AFLP markers linked to peanut (Arachis hypogaea L.) resistance to the aphid vector of groundnut rosette disease. Theor Appl Genet 109(7):1426–1433

    Article  CAS  PubMed  Google Scholar 

  • Holland JB (2004) Implementation of molecular markers for quantitative traits in breeding programs – changes and opportunities. In: Fisher T (ed) New direction for a diverse planet. Proceedings of the 4th international crop science congress, 26th September to 1st October, 2004, Brisbane, Australia

  • Hopkins MS, Casa AM, Wang T, Mitchell SE, Dean RE, Kochert GD, Kresovich S (1999) Discovery and characterization of polymorphic simple sequence repeats (SSRs) in peanut. Crop Sci 39:1243–1247

    Article  CAS  Google Scholar 

  • Janila P, Pandey MK, Shasidhar Y, Variath MT, Sriswathi M, Khera P, Manohar SS, Nagesh P, Vishwakarma MK, Mishra GP, Radhakrishnan T, Manivannan N, Dobariya KL, Vasanthi RP, Varshney RK (2016) Molecular breeding for introgression of fatty acid desaturase mutant alleles (ahFAD2A and ahFAD2B) enhances oil quality in high and low oil containing peanut genotypes. Plant Sci 242:203–213

  • Kamdar JH, Goswami BR, Bera SK (2014) Genetic molecular diversity in interspecific peanut lines differing in temporal resistance to peanut bud necrosis disease. Afr J Biotechnol 13(3):385–393

    Article  CAS  Google Scholar 

  • Khedikar YP, Gowda MVC, Sarvamangala C, Patgar KV, Upadhyaya HD, Varshney RK (2010) A QTL study on late leaf spot and rust revealed one major QTL for molecular breeding for rust resistance in groundnut (Arachis hypogaea L.) Theor Appl Genet 121(5):971–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koilkonda P, Sato S, Tabata S, Shirasawa K, Hirakawa H, Sakai H, Sasamoto S, Watanabe A, Wada T, Kishida Y, Tsuruoka H, Fujishiro T, Yamada M, Kohara M, Suzuki S, Hasegawa M, Kiyoshima H, Isobe S (2012) Large-scale development of expressed sequence tag-derived simple sequence repeat markers and diversity analysis in Arachis spp. Mol Breed 30(1):125–138

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugenics 12:172–175

    Article  Google Scholar 

  • Kumer N, Dagla MC, Ajay BC, Jadon KS, Thirumalaisamy PP (2013) Sclerotium stem rot: a threat to groundnut production. Popular Kheti 1:26–30

    Google Scholar 

  • Mace ES, Phong DT, Upadhyaya HD, Chandra S, Crouch JH (2006) SSR analysis of cultivated peanut (Arachis hypogaea L.) germplasm resistant to rust and late leaf spot diseases. Euphytica 152:317–330

    Article  Google Scholar 

  • McClintock JA (1918) Peanut-wilt caused by Sclerotium rolfsii. J Agric Res 8:441–448

    Google Scholar 

  • Mehan VK and McDonald D (1990) Some Important diseases of groundnut-sources of resistance and their utilization in crop improvement. Paper presented at the In-Country Training Course on Legumes Production, Sri Lanka 9–17 July, 1990, (limited distribution)

  • Meng L, Li H, Zhang L, Wang J (2015) QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in bi-parental populations. Crop J 3:265–279

    Article  Google Scholar 

  • Mondal S, Badigannavar AM (2010) Molecular diversity and association of SSR markers to rust and late leaf spot resistance in cultivated groundnut (Arachis hypogaea L. Plant Breed 129(1):68–71

    Article  CAS  Google Scholar 

  • Mondal S, Hadapad AB, Hande PA, Badigannavar AM (2014) Identification of quantitative trait loci for bruchid (Caryedon serratus Olivier) resistance components in cultivated groundnut (Arachis hypogaea L.) Mol Breed 33(4):961–973

  • Moretzsohn MC, Leoi L, Proite K, Guimara PM, Leal-Bertioli SCM, Gimenes MA, Martins WS, Valls JFM, Grattapaglia D, Bertioli DAJ (2005) Microsatellite-based gene-rich linkage map for the AA genome of Arachis (Fabaceae.) Theor Appl Genet 111:1060–1071

    Article  CAS  PubMed  Google Scholar 

  • Nagy ED, Chu Y, Guo Y, Khanal S, Tang S, Li Y, Dong WB, Timper P, Taylor C, Ozias-Akins P, Holbrook CC, Beilinson V, Nielsen NC, Stalker HT, Knapp SJ (2010a) Recombination is suppressed in an alien introgression in peanut harboring Rma, a dominant root-knot nematode resistance gene. Mol Breed 26(2):357–370

  • Nagy E, Guo S, Khanal S, Taylor C, Ozias-Akins P, Stalker HT, Nielsen N (2010b) Developing a high density molecular map of the A-genome species A. duranensis. In: Proceedings American Peanut Research and Education Society (APRES), 12-15th July Florida, USA

  • Nautiyal PC, Zala PV, Tomar RS, Sodavadiya P, Tavethia B (2011) Evaluation of water use efficient newly developed varieties of groundnut in on-farm trials in two different rainfall areas in Gujarat, India. J SAT Agric Res 9:6

    Google Scholar 

  • Nigam SN, Rao MJ and Gibbons RW (1990) Artificial Hybridization in Groundnut. Information Bulletin no. 29. Patancheru, A.P. 502 324, India: International Crops Research Institute for the Semi-Arid Tropics

  • Pandey MK, Wang ML, Qiao L, Feng S, Khera P, Wang H, Tonnis B, Barkley NA, Wang J, Holbrook CC, Culbreath AK, Varshney RK, Guo B (2014) Identification of QTLs associated with oil content and mapping FAD2 genes and their relative contribution to oil quality in peanut (Arachis hypogaea L.). BMC Genet 15:133

  • Qin H, Feng S, Chen C, Guo Y, Knapp S, Culbreath A, He G, Wang ML, Zhang X, Holbrook CC, Ozias-Akins P, Guo B (2012) An integrated genetic linkage map of cultivated peanut (Arachis hypogaea L.) constructed from two RIL populations. Theor Appl Genet 124(4):653–664

  • Shew BB, Beute MK, Campbell CL (1984) Spatial pattern of southern stem rot caused by Sclerotium rolfsii in six North Carolina Peanut fields. Phytopathology 74:730–735

  • Simpson CE (2001) Use of wild Arachis species/introgression of genes into A. hypogaea L. Peanut Sci 28(2):114–116

    Article  CAS  Google Scholar 

  • Simpson CE, Starr JL, Church GT, Burow MD, Paterson AH (2003) Registration of ‘NemaTAM’ peanut. (registrations of cultivars. Crop Sci 43(4):1561–1562

    Article  Google Scholar 

  • Slate J (2005) Quantitative trait locus mapping in natural populations: progress, caveats and future directions. Mol Ecol 14(2):363–379

  • Song GQ, Li MJ, Xiao H, Wang XJ, Tang RH, Xia H, Zhao CZ, Bi YP (2010) EST sequencing and SSR marker development from cultivated peanut (Arachis hypogaea L.). Electronic. J Biotechnol 13(3):7–8

  • Sourdille P, Cadalen T, Guyomarc'h H, Snape JW, Perretant MR, Charmet G, Boeuf C, Bernard S, Bernard M (2003) An update of the Courtot x Chinese Spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat. Theor Appl Genet 106:530–58

  • Stalker HT, Mozingo LG (2001) Molecular markers of Arachis and marker-assisted selection. Peanut Sci 28(2):117–123

    Article  CAS  Google Scholar 

  • Sujay V, Gowda MVC, Pandey MK, Bhat RS, Khedikar YP, Nadaf HL, Gautami B, Sarvamangala C, Lingaraju S, Radhakrishan T, Knapp SJ, Varshney RK (2012) Quantitative trait locus analysis and construction of consensus genetic map for foliar disease resistance based on two recombinant inbred line populations in cultivated groundnut (Arachis hypogaea L.). Mol Breed 30(2):773–788

  • Thirumalaisamy PP, Kumar N, Radhakrishnan T, Rathnakumar AL, Bera SK, Jadon KS, Mishra GP, Rajyaguru R, Joshi B (2014) Phenotyping of groundnut genotypes for resistance to sclerotium stem rot. J Mycol Pl Pathol 44(4):459–462

    Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23:48–55

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Bertioli DJ, Moretzsohn MC, Vadez V, Krishnamurty L, Aruna R, Nigam SN, Moss BJ, Seetha K, Ravi K, He G, Knapp SJ, Hoisington DA (2009) The first SSR based genetic linkage map for cultivated groundnut (A. hypogaea L.) Theor Appl Genet 118:729–739

  • Young ND, Weeden NF, Kochert G (1996) Genome mapping in legumes (family Fabaceae). In: Paterson AH (ed) Genome mapping in plants. Landes Biomedical Press, Texas, USA pp. 211–277

Download references

Acknowledgments

Authors are gratefully acknowledge the financial assistance received from the Department of Biotechnology, Govt. of India for carrying out this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Bera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bera, S.K., Kamdar, J.H., Kasundra, S.V. et al. A novel QTL governing resistance to stem rot disease caused by Sclerotium rolfsii in peanut. Australasian Plant Pathol. 45, 637–644 (2016). https://doi.org/10.1007/s13313-016-0448-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13313-016-0448-x

Keywords

Navigation