Skip to main content
Log in

The Nuclear Envelope: An Intriguing Focal Point for Neurogenetic Disease

  • Review
  • Published:
Neurotherapeutics

Abstract

Mutations in genes encoding nuclear envelope proteins cause a wide range of inherited diseases, many of which are neurological. We review the genetic causes and what little is known about pathogenesis of these nuclear envelopathies that primarily affect striated muscle, peripheral nerve and the central nervous system. We conclude by providing examples of experimental therapeutic approaches to these rare but important neuromuscular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Bione S, Maestrini E, Rivella S, et al. Identification of a novel X-linked gene responsible for Emery-Dreifuss muscular dystrophy. Nat Genet 1994;8:323-327.

    PubMed  CAS  Google Scholar 

  2. Nagano A, Koga R, Ogawa M, et al. Emerin deficiency at the nuclear membrane in patients with Emery-Dreifuss muscular dystrophy. Nat Genet 1996;12:254-259.

    PubMed  CAS  Google Scholar 

  3. Manilal S, Nguyen TM, Sewry CA, Morris GE. The Emery-Dreifuss muscular dystrophy protein, emerin, is a nuclear membrane protein. Hum Mol Genet 1996;5:801-808.

    PubMed  CAS  Google Scholar 

  4. Dauer WT, Worman HJ. The nuclear envelope as a signaling node in development and disease. Dev Cell 2009;17:626-638.

    PubMed  CAS  Google Scholar 

  5. Schirmer EC, Florens L, Guan T, Yates JR, Gerace L. Nuclear membrane proteins with potential disease links found by subtractive proteomics. Science 2003;301:1380-1382.

    PubMed  CAS  Google Scholar 

  6. Gerace L, Ottaviano Y, Kondor-Koch C. Identification of a major polypeptide of the nuclear pore complex. J Cell Biol 1982;95:826-837.

    PubMed  CAS  Google Scholar 

  7. Hallberg E, Wozniak RW, Blobel G. An integral membrane protein of the pore membrane domain of the nuclear envelope contains a nucleoporin-like region. J Cell Biol 1993;122:513-521.

    PubMed  CAS  Google Scholar 

  8. Mansfeld J, Güttinger S, Hawryluk-Gara LA, et al. The conserved transmembrane nucleoporin NDC1 is required for nuclear pore complex assembly in vertebrate cells. Mol Cell 2006;22:93-103.

    PubMed  CAS  Google Scholar 

  9. Stavru F, Hülsmann BB, Spang A, Hartmann E, Cordes VC, Görlich D. NDC1: a crucial membrane-integral nucleoporin of metazoan nuclear pore complexes. J Cell Biol 2006;173:509-519.

    PubMed  CAS  PubMed Central  Google Scholar 

  10. Crisp M, Liu Q, Roux K, et al. Coupling of the nucleus and cytoplasm: role of the LINC complex. J Cell Biol 2006;172:41-53.

    PubMed  CAS  PubMed Central  Google Scholar 

  11. Gundersen GG, Worman HJ. Nuclear positioning. Cell 2013;152:1376-1389.

    PubMed  CAS  PubMed Central  Google Scholar 

  12. Gerace L, Blum A, Blobel G. Immunocytochemical localization of the major polypeptides of the nuclear pore complex-lamina fraction. Interphase and mitotic distribution. J Cell Biol 1978;79:546-566.

    PubMed  CAS  Google Scholar 

  13. McKeon FD, Kirschner MW, Caput D. Homologies in both primary and secondary structure between nuclear envelope and intermediate filament proteins. Nature 1986;319:463-468.

    PubMed  CAS  Google Scholar 

  14. Aebi U, Cohn J, Buhle L, Gerace L. The nuclear lamina is a meshwork of intermediate-type filaments. Nature 1986;323:560-564.

    PubMed  CAS  Google Scholar 

  15. Fisher DZ, Chaudhary N, Blobel G. cDNA sequencing of nuclear lamins A and C reveals primary and secondary structural homology to intermediate filament proteins. Proc Natl Acad Sci USA 1986;83:6450-6454.

    PubMed  CAS  PubMed Central  Google Scholar 

  16. Goldman AE, Maul G, Steinert PM, Yang HY, Goldman RD. Keratin-like proteins that coisolate with intermediate filaments of BHK-21 cells are nuclear lamins. Proc Natl Acad Sci USA 1986;83:3839-3843.

    PubMed  CAS  PubMed Central  Google Scholar 

  17. Wilson KL, Foisner R. Lamin-binding proteins. Cold Spring Harb Perspect Biol 2010;2:a000554.

    PubMed  PubMed Central  Google Scholar 

  18. Lin F, Worman HJ. Structural organization of the human gene encoding nuclear lamin A and nuclear lamin C. J Biol Chem 1993;268:16321-16326.

    PubMed  CAS  Google Scholar 

  19. Lin F, Worman HJ Structural organization of the human gene (LMNB1) encoding nuclear lamin B1. Genomics 1995;27:230-236.

    PubMed  CAS  Google Scholar 

  20. Biamonti G, Giacca M, Perini G, et al. The gene for a novel human lamin maps at a highly transcribed locus of chromosome 19 which replicates at the onset of S-phase. Mol Cell Biol 1992;12:3499-3506.

    PubMed  CAS  PubMed Central  Google Scholar 

  21. Young SG, Fong LG, Michaelis S. Prelamin A, Zmpste24, misshapen cell nuclei, and progeria—new evidence suggesting that protein farnesylation could be important for disease pathogenesis. J Lipid Res 2005;46:2531-2558.

    PubMed  CAS  Google Scholar 

  22. Rusiñol AE, Sinensky MS. Farnesylated lamins, progeroid syndromes and farnesyl transferase inhibitors. J Cell Sci 2006;119:3265-3272.

    PubMed  Google Scholar 

  23. Hoelz A, Debler EW, Blobel G. The structure of the nuclear pore complex. Annu Rev Biochem 2011;80:613-643.

    PubMed  CAS  Google Scholar 

  24. Fernandez-Martinez J, Rout MP. A jumbo problem: mapping the structure and functions of the nuclear pore complex. Curr Opin Cell Biol 2012;24:92-99.

    PubMed  CAS  PubMed Central  Google Scholar 

  25. Bilokapic S, Schwartz TU. 3D ultrastructure of the nuclear pore complex. Curr Opin Cell Biol 2012;24:86-91.

    PubMed  CAS  PubMed Central  Google Scholar 

  26. Adams RL, Wente SR. Uncovering nuclear pore complexity with innovation. Cell 2013;152:1218-1221.

    PubMed  CAS  PubMed Central  Google Scholar 

  27. Liang Y, Hetzer MW. Functional interactions between nucleoporins and chromatin. Curr Opin Cell Biol 2011;23:65-70.

    PubMed  CAS  PubMed Central  Google Scholar 

  28. Ptak C, Aitchison JD, Wozniak RW. The multifunctional nuclear pore complex: a platform for controlling gene expression. Curr Opin Cell Biol 2014;28C:46-53.

    Google Scholar 

  29. Raices M, D’Angelo MA. Nuclear pore complex composition: a new regulator of tissue-specific and developmental functions. Nat Rev Mol Cell Biol 2012;13:687-699.

    PubMed  CAS  Google Scholar 

  30. Céstan R, LeJonne P. Une myopathie avec retractions familiales. Nouv Iconogr Salpetr 1902;15:38-52

    Google Scholar 

  31. Emery AEH, Dreifuss FE. Unusual type of benign X-linked muscular dystrophy. J Neurol Neurosurg Psychiatry 1966;29:338-342.

    PubMed  CAS  PubMed Central  Google Scholar 

  32. Rowland LP, Fetell M, Olarte M, Hays A, Singh N, Wanat FE. Emery-Dreifuss muscular dystrophy. Ann Neurol 1979;5:111-117.

    PubMed  CAS  Google Scholar 

  33. Emery AEH. X-linked muscular dystrophy with early contractures and cardiomyopathy (Emery-Dreifuss type). Clin Genet 1987;32:360-367.

    PubMed  CAS  Google Scholar 

  34. Yates JR, Bagshaw J, Aksmanovic VM, et al. Genotype-phenotype analysis in X-linked Emery-Dreifuss muscular dystrophy and identification of a missense mutation associated with a milder phenotype. Neuromuscul Disord 1999;9:159-165.

    PubMed  CAS  Google Scholar 

  35. Bonne G, Di Barletta MR, Varnous S, et al. Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy. Nat Genet 1999;21:285-288.

    PubMed  CAS  Google Scholar 

  36. Fatkin D, MacRae C, Sasaki T, et al. Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease. N Engl J Med 1999;341:1715-1724.

    PubMed  CAS  Google Scholar 

  37. Muchir A, Bonne G, van der Kooi AJ, et al. Identification of mutations in the gene encoding lamins A/C in autosomal dominant limb girdle muscular dystrophy with atrioventricular conduction disturbances (LGMD1B). Hum Mol Genet 2000;9:1453-1459.

    PubMed  CAS  Google Scholar 

  38. Bonne G, Mercuri E, Muchir A, et al. Clinical and molecular genetic spectrum of autosomal dominant Emery-Dreifuss muscular dystrophy due to mutations of the lamin A/C gene. Ann Neurol 2000;48:170-180.

    PubMed  CAS  Google Scholar 

  39. Brodsky GL, Muntoni F, Miocic S, Sinagra G, Sewry C, Mestroni L. Lamin A/C gene mutation associated with dilated cardiomyopathy with variable skeletal muscle involvement. Circulation 2000;101:473-476.

    PubMed  CAS  Google Scholar 

  40. Muntoni F, Lichtarowicz-Krynska EJ, Sewry CA, et al. Early presentation of X-linked Emery-Dreifuss muscular dystrophy resembling limb-girdle muscular dystrophy. Neuromuscul Disord 1998;8:72-76.

    PubMed  CAS  Google Scholar 

  41. Astejada MN, Goto K, Nagano A, et al. Emerinopathy and laminopathy clinical, pathological and molecular features of muscular dystrophy with nuclear envelopathy in Japan. Acta Myol 2007;26:159-164.

    PubMed  CAS  PubMed Central  Google Scholar 

  42. Ura S, Hayashi YK, Goto K, et al. Limb-girdle muscular dystrophy due to emerin gene mutations. Arch Neurol 2007;64:1038-1041.

    PubMed  Google Scholar 

  43. Mercuri E, Poppe M, Quinlivan R, et al. Extreme variability of phenotype in patients with an identical missense mutation in the lamin A/C gene: from congenital onset with severe phenotype to milder classic Emery-Dreifuss variant. Arch Neurol 2004;61:690-694.

    PubMed  Google Scholar 

  44. Quijano-Roy S, Mbieleu B, Bönnemann CG, et al. De novo LMNA mutations cause a new form of congenital muscular dystrophy. Ann Neurol 2008;64:177-186.

    PubMed  Google Scholar 

  45. Worman HJ, Fong LG, Muchir A, Young SG. Laminopathies and the long strange trip from basic cell biology to therapy. J Clin Invest 2009;119:1825-1836.

    PubMed  CAS  PubMed Central  Google Scholar 

  46. Worman HJ. Nuclear lamins and laminopathies. J Pathol 2012;226:316-325.

    PubMed  CAS  Google Scholar 

  47. Taylor MR, Slavov D, Gajewski A, et al. Thymopoietin (lamina-associated polypeptide 2) gene mutation associated with dilated cardiomyopathy. Hum Mutat 2005;26:566-574.

    PubMed  CAS  Google Scholar 

  48. Gotic I, Leschnik M, Kolm U, et al. Lamina-associated polypeptide 2alpha loss impairs heart function and stress response in mice. Circ Res 2010;106:346-353.

    PubMed  CAS  PubMed Central  Google Scholar 

  49. Zhang Q, Bethmann C, Worth NF, et al. Nesprin-1 and -2 are involved in the pathogenesis of Emery Dreifuss muscular dystrophy and are critical for nuclear envelope integrity. Hum Mol Genet 2007;16:2816-2833.

    PubMed  CAS  Google Scholar 

  50. Puckelwartz MJ, Kessler E, Zhang Y, et al. Disruption of nesprin-1 produces an Emery Dreifuss muscular dystrophy-like phenotype in mice. Hum Mol Genet 2009;18:607-620.

    PubMed  CAS  PubMed Central  Google Scholar 

  51. Puckelwartz MJ, Kessler EJ, Kim G, et al. Nesprin-1 mutations in human and murine cardiomyopathy. J Mol Cell Cardiol 2010;48:600-608.

    PubMed  CAS  PubMed Central  Google Scholar 

  52. Banerjee I, Zhang J, Moore-Morris T, et al. Targeted ablation of nesprin 1 and nesprin 2 from murine myocardium results in cardiomyopathy, altered nuclear morphology and inhibition of the biomechanical gene response. PLoS Genet 2014;10:e1004114.

    PubMed  PubMed Central  Google Scholar 

  53. Attali R, Warwar N, Israel A, et al. Mutation of SYNE-1, encoding an essential component of the nuclear lamina, is responsible for autosomal recessive arthrogryposis. Hum Mol Genet 2009;18:3462-3469.

    PubMed  CAS  Google Scholar 

  54. Kayman-Kurekci G, Talim B, Korkusuz P, et al. Mutation in TOR1AIP1 encoding LAP1B in a form of muscular dystrophy: a novel gene related to nuclear envelopathies. Neuromuscul Disord 2014;24:624-633.

    PubMed  Google Scholar 

  55. Shin JY, Méndez-López I, Wang Y, et al. Lamina-associated polypeptide-1 interacts with the muscular dystrophy protein emerin and is essential for skeletal muscle maintenance. Dev Cell 2013;26:591-603.

    PubMed  CAS  PubMed Central  Google Scholar 

  56. Shin JY, Le Dour C, Sera F, et al. Depletion of lamina-associated polypeptide 1 from cardiomyocytes causes cardiac dysfunction in mice. Nucleus 2014. doi:10.4161/nucl.29227.

  57. Liang WC, Mitsuhashi H, Keduka E, et al. TMEM43 mutations in Emery-Dreifuss muscular dystrophy-related myopathy. Ann Neurol 2011;69:1005-1013.

    PubMed  CAS  Google Scholar 

  58. Lammerding J, Schulze PC, Takahashi T, et al. Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J Clin Invest 2004;113:370-378.

    PubMed  CAS  PubMed Central  Google Scholar 

  59. Broers JL, Peeters EA, Kuijpers HJ, et al. Decreased mechanical stiffness in LMNA-/- cells is caused by defective nucleo-cytoskeletal integrity: implications for the development of laminopathies. Hum Mol Genet 2004;13:2567-2580.

    PubMed  CAS  Google Scholar 

  60. Lammerding J, Hsiao J, Schulze PC, Kozlov S, Stewart CL, Lee RT. Abnormal nuclear shape and impaired mechanotransduction in emerin-deficient cells. J Cell Biol 2005;170:781-791.

    PubMed  CAS  PubMed Central  Google Scholar 

  61. Isermann P, Lammerding J (2013) Nuclear mechanics and mechanotransduction in health and disease. Curr Biol 23:R1113-R1121.

    PubMed  CAS  Google Scholar 

  62. Muchir A, Pavlidis P, Decostre V, et al. Activation of MAPK pathways links LMNA mutations to cardiomyopathy in Emery-Dreifuss muscular dystrophy. J Clin Invest 2007;117:1282-1293.

    PubMed  CAS  PubMed Central  Google Scholar 

  63. Muchir A, Kim YJ, Reilly SA, Wu W, Choi JC, Worman HJ. Inhibition of extracellular signal-regulated kinase 1/2 signaling has beneficial effects on skeletal muscle in a mouse model of Emery-Dreifuss muscular dystrophy caused by lamin A/C gene mutation. Skelet Muscle 2013;3:17.

    PubMed  CAS  PubMed Central  Google Scholar 

  64. Folker ES, Östlund C, Luxton GW, Worman HJ, Gundersen GG. Lamin A variants that cause striated muscle disease are defective in anchoring transmembrane actin-associated nuclear lines for nuclear movement. Proc Natl Acad Sci USA 2013;108:131-136.

    Google Scholar 

  65. Chang W, Folker ES, Worman HJ, Gundersen GG. Emerin organizes actin flow for nuclear movement and centrosome orientation in migrating fibroblasts. Mol Biol Cell 2013;24:3869-3880.

    PubMed  PubMed Central  Google Scholar 

  66. Andrés V, González JM. Role of A-type lamins in signaling, transcription, and chromatin organization. J Cell Biol 2009;187:945-957.

    PubMed  PubMed Central  Google Scholar 

  67. Martins RP, Finan JD, Guilak F, Lee DA. Mechanical regulation of nuclear structure and function. Annu Rev Biomed Eng 2012;14:431-455.

    PubMed  CAS  PubMed Central  Google Scholar 

  68. Jung HJ, Coffinier C, Choe Y, et al. Regulation of prelamin A but not lamin C by miR-9, a brain-specific microRNA. Proc Natl Acad Sci USA 2012;109:E423-E431.

    PubMed  CAS  PubMed Central  Google Scholar 

  69. De Sandre-Giovannoli A, Chaouch M, Kozlov S, et al. Homozygous defects in LMNA, encoding lamin A/C nuclear-envelope proteins, cause autosomal recessive axonal neuropathy in human (Charcot-Marie-Tooth disorder type 2) and mouse. Am J Hum Genet 2002;70:726-736.

    PubMed  PubMed Central  Google Scholar 

  70. Tazir M, Azzedine H, Assami S, et al. Phenotypic variability in autosomal recessive axonal Charcot-Marie-Tooth disease due to the R298C mutation in lamin A/C. Brain 2004;127:154-163.

    PubMed  CAS  Google Scholar 

  71. Poitelon Y, Kozlov S, Devaux J, et al. Behavioral and molecular exploration of the AR-CMT2A mouse model Lmna (R298C/R298C). Neuromolecular Med 2012;14:40-52.

    PubMed  CAS  Google Scholar 

  72. Goizet C, Yaou RB, Demay L, et al. A new mutation of the lamin A/C gene leading to autosomal dominant axonal neuropathy, muscular dystrophy, cardiac disease, and leuconychia. J Med Genet 2004;41:e29.

    PubMed  CAS  PubMed Central  Google Scholar 

  73. Walter MC, Witt TN, Weigel BS, et al. Deletion of the LMNA initiator codon leading to a neurogenic variant of autosomal dominant Emery-Dreifuss muscular dystrophy. Neuromuscul Disord 2005;15:40-44.

    PubMed  Google Scholar 

  74. Benedetti S, Bertini E, Iannaccone S, et al. Dominant LMNA mutations can cause combined muscular dystrophy and peripheral neuropathy. J Neurol Neurosurg Psychiatry 2005;76:1019-1021.

    PubMed  CAS  PubMed Central  Google Scholar 

  75. Carboni N, Porcu M, Mura M, et al. Evolution of the phenotype in a family with an LMNA gene mutation presenting with isolated cardiac involvement. Muscle Nerve 2010;41:85-91.

    PubMed  CAS  Google Scholar 

  76. Coffeen CM, McKenna CE, Koeppen AH, et al. Genetic localization of an autosomal dominant leukodystrophy mimicking chronic progressive multiple sclerosis to chromosome 5q31. Hum Mol Genet 2000;9:787-793.

    PubMed  CAS  Google Scholar 

  77. Padiath QS, Saigoh K, Schiffmann R, et al. Lamin B1 duplications cause autosomal dominant leukodystrophy. Nat Genet 2006;38:1114-1123.

    PubMed  CAS  Google Scholar 

  78. Meijer IA, Simoes-Lopes AA, Laurent S, et al. A novel duplication confirms the involvement of 5q23.2 in autosomal dominant leukodystrophy. Arch Neurol 2008;65:1496-1501.

    PubMed  Google Scholar 

  79. Schuster J, Sundblom J, Thuresson AC, et al. Genomic duplications mediate overexpression of lamin B1 in adult-onset autosomal dominant leukodystrophy (ADLD) with autonomic symptoms. Neurogenetics 2011;12:65-72.

    PubMed  CAS  Google Scholar 

  80. Dos Santos MM, Grond-Ginsbach C, Aksay SS, et al. Adult-onset autosomal dominant leukodystrophy due to LMNB1 gene duplication. J Neurol 2012;259:579-581.

    PubMed  Google Scholar 

  81. Heng MY, Lin ST, Verret L, et al. Lamin B1 mediates cell-autonomous neuropathology in a leukodystrophy mouse model. J Clin Invest 2013;123:2719-2729.

    PubMed  CAS  PubMed Central  Google Scholar 

  82. Lin ST, Fu YH. miR-23 regulation of lamin B1 is crucial for oligodendrocyte development and myelination. Dis Model Mech 2009;2:178-188.

    PubMed  CAS  PubMed Central  Google Scholar 

  83. Lin ST, Huang Y, Zhang L, Heng MY, Ptácek LJ, Fu YH. MicroRNA-23a promotes myelination in the central nervous system. Proc Natl Acad Sci USA 2013;110:17468-17473.

    PubMed  CAS  PubMed Central  Google Scholar 

  84. Coffinier C, Chang SY, Nobumori C, et al. Abnormal development of the cerebral cortex and cerebellum in the setting of lamin B2 deficiency. Proc Natl Acad Sci USA 2010;107:5076-5081.

    PubMed  CAS  PubMed Central  Google Scholar 

  85. Coffinier C, Jung HJ, Nobumori C, et al. Deficiencies in lamin B1 and lamin B2 cause neurodevelopmental defects and distinct nuclear shape abnormalities in neurons. Mol Biol Cell 2011;22:4683-4693.

    PubMed  CAS  PubMed Central  Google Scholar 

  86. Jung HJ, Nobumori C, Goulbourne CN, et al. Farnesylation of lamin B1 is important for retention of nuclear chromatin during neuronal migration. Proc Natl Acad Sci USA 2013;110:E1923-E1932.

    PubMed  CAS  PubMed Central  Google Scholar 

  87. Gros-Louis F, Dupré N, Dion P, et al. Mutations in SYNE1 lead to a newly discovered form of autosomal recessive cerebellar ataxia. Nat Genet 2007;39:80-85.

    PubMed  CAS  Google Scholar 

  88. Izumi Y, Miyamoto R, Morino H, et al. Cerebellar ataxia with SYNE1 mutation accompanying motor neuron disease. Neurology 2013;80:600-601.

    PubMed  Google Scholar 

  89. Noreau A, Bourassa CV, Szuto A, et al. SYNE1 mutations in autosomal recessive cerebellar ataxia. JAMA Neurol 2013;70:1296-1301.

    PubMed  Google Scholar 

  90. Zhang X, Lei K, Yuan X, et al. SUN1/2 and Syne/Nesprin-1/2 complexes connect centrosome to the nucleus during neurogenesis and neuronal migration in mice. Neuron 2009;64:173-187.

    PubMed  CAS  PubMed Central  Google Scholar 

  91. Horn HF, Brownstein Z, Lenz DR, et al. The LINC complex is essential for hearing. J Clin Invest 2013;123:740-750.

    PubMed  CAS  PubMed Central  Google Scholar 

  92. Basel-Vanagaite L, Muncher L, Straussberg R, et al. Mutated nup62 causes autosomal recessive infantile bilateral striatal necrosis. Ann Neurol 2006;60:214-222.

    PubMed  CAS  Google Scholar 

  93. Neilson DE, Adams MD, Orr CM, et al. Infection-triggered familial or recurrent cases of acute necrotizing encephalopathy caused by mutations in a component of the nuclear pore, RANBP2. Am J Hum Genet 2009;84:44-51.

    PubMed  CAS  PubMed Central  Google Scholar 

  94. Ozelius LJ, Hewett JW, Page CE, et al. The early-onset torsion dystonia gene (DYT1) encodes an ATP-binding protein. Nat Genet 1997;17:40-48.

    PubMed  CAS  Google Scholar 

  95. Goodchild RE, Dauer WT. Mislocalization to the nuclear envelope: an effect of the dystonia-causing torsinA mutation. Proc Natl Acad Sci USA 2004;101:847-852.

    PubMed  CAS  PubMed Central  Google Scholar 

  96. Naismith TV, Heuser JE, Breakefield XO, Hanson PI. TorsinA in the nuclear envelope. Proc Natl Acad Sci USA 2004;101:7612-7617.

    PubMed  CAS  PubMed Central  Google Scholar 

  97. Gonzalez-Alegre P, Paulson HL Aberrant cellular behavior of mutant torsinA implicates nuclear envelope dysfunction in DYT1 dystonia. J Neurosci 2004;24:2593-2601.

    PubMed  CAS  Google Scholar 

  98. Dauer WT. Inherited isolated dystonia: clinical genetics and gene function. Neurotherapeutics 2014. doi:10.1007/s13311-014-0297-7.

  99. Muchir A, Wu W, Choi JC, et al. Abnormal p38α mitogen-activated protein kinase signaling in dilated cardiomyopathy caused by lamin A/C gene mutation. Hum Mol Genet 2012;21:4325-4333.

    PubMed  CAS  PubMed Central  Google Scholar 

  100. Muchir A, Shan J, Bonne G, Lehnart SE, Worman HJ. Inhibition of extracellular signal-regulated kinase signaling to prevent cardiomyopathy caused by mutation in the gene encoding A-type lamins. Hum Mol Genet 2009;18:241-247.

    PubMed  CAS  PubMed Central  Google Scholar 

  101. Wu W, Muchir A, Shan J, Bonne G, Worman HJ. Mitogen-activated protein kinase inhibitors improve heart function and prevent fibrosis in cardiomyopathy caused by mutation in lamin A/C gene. Circulation 2011;123:53-61.

    PubMed  CAS  PubMed Central  Google Scholar 

  102. Muchir A, Reilly SA, Wu W, et al. Treatment with selumetinib preserves cardiac function and improves survival in cardiomyopathy caused by mutation in the lamin A/C gene. Cardiovasc Res 2012;93:311-319.

    PubMed  CAS  Google Scholar 

  103. Choi JC, Muchir A, Wu W, et al. Temsirolimus activates autophagy and ameliorates cardiomyopathy caused by lamin A/C gene mutation. Sci Transl Med 2012;4:144ra102.

    PubMed  PubMed Central  Google Scholar 

  104. Ramos FJ, Chen SC, Garelick MG, et al. Rapamycin reverses elevated mTORC1 signaling in lamin A/C-deficient mice, rescues cardiac and skeletal muscle function, and extends survival. Sci Transl Med 2012;4:144ra103.

    PubMed  PubMed Central  Google Scholar 

  105. Yang SH, Bergo MO, Toth JI, et al. Blocking protein farnesyltransferase improves nuclear blebbing in mouse fibroblasts with a targeted Hutchinson-Gilford progeria syndrome mutation. Proc Natl Acad Sci USA 2005;102:10291-10296.

    PubMed  CAS  PubMed Central  Google Scholar 

  106. Toth JI, Yang SH, Qiao X, et al. Blocking protein farnesyltransferase improves nuclear shape in fibroblasts from humans with progeroid syndromes. Proc Natl Acad Sci USA 2005;102:12873-12878.

    PubMed  CAS  PubMed Central  Google Scholar 

  107. Capell BC, Erdos MR, Madigan JP, et al. Inhibiting farnesylation of progerin prevents the characteristic nuclear blebbing of Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci USA 2005;102:12879-12884.

    PubMed  CAS  PubMed Central  Google Scholar 

  108. Mallampalli MP, Huyer G, Bendale P, Gelb MH, Michaelis S. Inhibiting farnesylation reverses the nuclear morphology defect in a HeLa cell model for Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci USA 2005;102:14416-14421.

    PubMed  CAS  PubMed Central  Google Scholar 

  109. Glynn MW, Glover TW. Incomplete processing of mutant lamin A in Hutchinson-Gilford progeria leads to nuclear abnormalities, which are reversed by farnesyltransferase inhibition. Hum Mol Genet 2005;14:2959-2969.

    PubMed  CAS  Google Scholar 

  110. Fong LG, Frost D, Meta M, et al. A protein farnesyltransferase inhibitor ameliorates disease in a mouse model of progeria. Science 2006;311:1621-1623.

    PubMed  CAS  Google Scholar 

  111. Yang SH, Meta M, Qiao X, et al. A farnesyltransferase inhibitor improves disease phenotypes in mice with a Hutchinson-Gilford progeria syndrome mutation. J Clin Invest 2006;116:2115-2121.

    PubMed  CAS  PubMed Central  Google Scholar 

  112. Capell BC, Olive M, Erdos MR, et al. A farnesyltransferase inhibitor prevents both the onset and late progression of cardiovascular disease in a progeria mouse model. Proc Natl Acad Sci USA 2008;105:15902-15907.

    PubMed  CAS  PubMed Central  Google Scholar 

  113. Gordon LB, Kleinman ME, Miller DT, et al. Clinical trial of a farnesyltransferase inhibitor in children with Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci USA 2012;109:16666-16671.

    PubMed  CAS  PubMed Central  Google Scholar 

  114. Larrieu D, Britton S, Demir M, Rodriguez R, Jackson SP. Chemical inhibition of NAT10 corrects defects of laminopathic cells. Science 2014;344:527-532.

    PubMed  CAS  Google Scholar 

  115. Dorval T, Ogier A, Genovesio A, Lim HK, Kwon do Y, Lee JH, Worman HJ, Dauer W, Grailhe R. Contextual automated 3D analysis of subcellular organelles adapted to high-content screening. J Biomol Screen 2010;15:847-857.

    PubMed  CAS  Google Scholar 

  116. Zhao C, Brown RS, Chase AR, Eisele MR, Schlieker C. Regulation of torsin ATPases by LAP1 and LULL1. Proc Natl Acad Sci USA 2013;110:E1545-E1554.

    PubMed  CAS  PubMed Central  Google Scholar 

  117. Liang CC, Tanabe LM, Jou S, Chi F, Dauer WT. TorsinA hypofunction causes abnormal twisting movements and sensorimotor circuit neurodegeneration. J Clin Invest 2014;124:3080-3092.

    PubMed  CAS  PubMed Central  Google Scholar 

  118. Maguire CA, Ramirez SH, Merkel S, Sena-Esteves M, Breakefield XO. Gene therapy for the nervous system: challenges and new strategies. Neurotherapeutics 2014;This issue.

  119. Young SG, Jung HJ, Lee JM, Fong LG. Nuclear lamins and neurobiology. Mol Cell Biol 2014;34:2776-2785.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Dr. Worman is supported by grants from the National Institutes of Health (R01AR048997, R01HD070713, R01NS059352 and R41TR001008), the Muscular Dystrophy Association (MDA294537) and the Los Angeles Thoracic and Cardiovascular Foundation. Dr. Dauer is supported by grants from the National Institutes of Health (R01NS077730), the Bachmann-Strauss Dystonia and Parkinson Foundation, the Dystonia Medical Research Foundation, Tyler’s Hope For a Cure Dystonia Foundation and the Michael J. Fox Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Howard J. Worman or William T. Dauer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1225 kb)

ESM 2

(PDF 498 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Worman, H.J., Dauer, W.T. The Nuclear Envelope: An Intriguing Focal Point for Neurogenetic Disease. Neurotherapeutics 11, 764–772 (2014). https://doi.org/10.1007/s13311-014-0296-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13311-014-0296-8

Key Words

Navigation