Skip to main content
Log in

The Role for Alterations in Neuronal Activity in the Pathogenesis of Polyglutamine Repeat Disorders

  • Review
  • Published:
Neurotherapeutics

Abstract

Polyglutamine diseases are a class of neurodegenerative diseases that share an expansion of a glutamine-encoding CAG tract in the respective disease genes as a central hallmark. In all of these diseases there is progressive degeneration in a select subset of neurons, and the mechanisms behind this degeneration remain unclear. Emerging evidence from animal models of disease has identified abnormalities in synaptic signaling and intrinsic excitability in affected neurons, which coincide with the onset of symptoms and precede apparent neuropathology. The appearance of these early changes suggests that altered neuronal activity might be an important component of network dysfunction and that these alterations in network physiology could contribute to symptoms of disease. Here we review abnormalities in neuronal function that have been identified in both animal models and patients, and highlight ways in which these changes in neuronal activity may contribute to disease symptoms. We then review the literature supporting an emerging role for abnormalities in neuronal activity as a driver of neurodegeneration. Finally, we identify common themes that emerge from studies of neuronal dysfunction in polyglutamine disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. La Spada AR, Wilson EM, Lubahn DB, Harding AE, Fischbeck KH. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 1991;352:77-79.

    PubMed  Google Scholar 

  2. MacDonald ME, Ambrose CM, Duyao MP, et al. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group. Cell 1993;72:971-983.

    Google Scholar 

  3. Orr HT, Chung MY, Banfi S, et al. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet 1993;4:221-226.

    PubMed  CAS  Google Scholar 

  4. Kawaguchi Y, Okamoto T, Taniwaki M, et al. CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nat Genet 1994;8:221-228.

    PubMed  CAS  Google Scholar 

  5. Koide R, Ikeuchi T, Onodera O, et al. Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA). Nat Genet 1994;6:9-13.

    PubMed  CAS  Google Scholar 

  6. Pulst SM, Nechiporuk A, Nechiporuk T, et al. Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet 1996;14:269-276.

    PubMed  CAS  Google Scholar 

  7. Lindblad K, Savontaus ML, Stevanin G, et al. An expanded CAG repeat sequence in spinocerebellar ataxia type 7. Genome Res 1996;6:965-971.

    PubMed  CAS  Google Scholar 

  8. Zhuchenko O, Bailey J, Bonnen P, et al. Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1A-voltage-dependent calcium channel. Nat Genet 1997;15:62-69.

    PubMed  CAS  Google Scholar 

  9. Koide R, Kobayashi S, Shimohata T, et al. A neurological disease caused by an expanded CAG trinucleotide repeat in the TATA-binding protein gene: a new polyglutamine disease? Hum Mol Genet 1999;8:2047-2053.

    PubMed  CAS  Google Scholar 

  10. Burright EN, Clark HB, Servadio A, et al. SCA1 transgenic mice: a model for neurodegeneration caused by an expanded CAG trinucleotide repeat. Cell 1995;82:937-948.

    PubMed  CAS  Google Scholar 

  11. Huynh DP, Figueroa K, Hoang N, Pulst SM. Nuclear localization or inclusion body formation of ataxin-2 are not necessary for SCA2 pathogenesis in mouse or human. Nat Genet 2000;26:44-50.

    PubMed  CAS  Google Scholar 

  12. Shakkottai VG, do Carmo Costa M, Dell’Orco JM, Sankaranarayanan A, Wulff H, Paulson HL. Early changes in cerebellar physiology accompany motor dysfunction in the polyglutamine disease spinocerebellar ataxia type 3. J Neurosci 2011;31:13002-13014.

    PubMed  CAS  PubMed Central  Google Scholar 

  13. Watase K, Barrett CF, Miyazaki T, et al. Spinocerebellar ataxia type 6 knockin mice develop a progressive neuronal dysfunction with age-dependent accumulation of mutant CaV2.1 channels. Proc Natl Acad Sci U S A 2008;105:11987-11992.

    PubMed  CAS  PubMed Central  Google Scholar 

  14. Yvert G, Lindenberg KS, Picaud S, Landwehrmeyer GB, Sahel JA, Mandel JL. Expanded polyglutamines induce neurodegeneration and trans-neuronal alterations in cerebellum and retina of SCA7 transgenic mice. Hum Mol Genet 2000;9:2491-2506.

    PubMed  CAS  Google Scholar 

  15. Kelp A, Koeppen AH, Petrasch-Parwez E, et al. A novel transgenic rat model for spinocerebellar ataxia type 17 recapitulates neuropathological changes and supplies in vivo imaging biomarkers. J Neurosci 2013;33:9068-9081.

    PubMed  CAS  Google Scholar 

  16. Mangiarini L, Sathasivam K, Seller M, et al. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 1996;87:493-506.

    PubMed  CAS  Google Scholar 

  17. Sato T, Miura M, Yamada M, et al. Severe neurological phenotypes of Q129 DRPLA transgenic mice serendipitously created by en masse expansion of CAG repeats in Q76 DRPLA mice. Hum Mol Genet 2009;18:723-736.

    PubMed  CAS  PubMed Central  Google Scholar 

  18. Williams AJ, Paulson HL. Polyglutamine neurodegeneration: protein misfolding revisited. Trends Neurosci 2008;31:521-528.

    PubMed  CAS  PubMed Central  Google Scholar 

  19. Shao J, Diamond MI. Polyglutamine diseases: emerging concepts in pathogenesis and therapy. Hum Mol Genet 2007;16:R115-R123.

    PubMed  CAS  Google Scholar 

  20. Zuccato C, Valenza M, Cattaneo E. Molecular mechanisms and potential therapeutical targets in Huntington’s disease. Physiol Rev 2010;90:905-981.

    PubMed  CAS  Google Scholar 

  21. Orr HT. Polyglutamine neurodegeneration: expanded glutamines enhance native functions. Curr Opin Genet Dev 2012;22:251-255.

    PubMed  CAS  PubMed Central  Google Scholar 

  22. Tsuji S. Dentatorubral-pallidoluysian atrophy. Handb Clin Neurol 2012;103:587-594.

    PubMed  Google Scholar 

  23. Nagafuchi S, Yanagisawa H, Sato K, et al. Dentatorubral and pallidoluysian atrophy expansion of an unstable CAG trinucleotide on chromosome 12p. Nat Genet 1994;6:14-18.

    PubMed  CAS  Google Scholar 

  24. Naito H, Oyanagi S. Familial myoclonus epilepsy and choreoathetosis: hereditary dentatorubral-pallidoluysian atrophy. Neurology 1982;32:798-807.

    PubMed  CAS  Google Scholar 

  25. Yagishita S, Inoue M. Clinicopathology of spinocerebellar degeneration: its correlation to the unstable CAG repeat of the affected gene. Pathol Int 1997;47:1-15.

    PubMed  CAS  Google Scholar 

  26. Donato SD, Mariotti C, Taroni F. Spinocerebellar ataxia type 1. Handb Clin Neurol 2012;103:399-421.

    PubMed  Google Scholar 

  27. Ferrer I, Genis D, Davalos A, Bernado L, Sant F, Serrano T. The Purkinje cell in olivopontocerebellar atrophy. A Golgi and immunocytochemical study. Neuropathol Appl Neurobiol 1994;20:38-46.

    PubMed  CAS  Google Scholar 

  28. Hourez R, Servais L, Orduz D, et al. Aminopyridines correct early dysfunction and delay neurodegeneration in a mouse model of spinocerebellar ataxia type 1. J Neurosci 2011;31:11795-11807.

    PubMed  CAS  Google Scholar 

  29. Barnes JA, Ebner BA, Duvick LA, et al. Abnormalities in the climbing fiber-Purkinje cell circuitry contribute to neuronal dysfunction in ATXN1[82Q] mice. J Neurosci 2011;31:12778-12789.

    PubMed  CAS  PubMed Central  Google Scholar 

  30. Ebner BA, Ingram MA, Barnes JA, et al. Purkinje cell ataxin-1 modulates climbing fiber synaptic input in developing and adult mouse cerebellum. J Neurosci 2013;33:5806-5820.

    PubMed  CAS  PubMed Central  Google Scholar 

  31. Duvick L, Barnes J, Ebner B, et al. SCA1-like disease in mice expressing wild-type ataxin-1 with a serine to aspartic acid replacement at residue 776. Neuron 2010;67:929-935.

    PubMed  CAS  PubMed Central  Google Scholar 

  32. Auburger GW. Spinocerebellar ataxia type 2. Handb Clin Neurol 2012;103:423-436.

    PubMed  Google Scholar 

  33. Orozco G, Estrada R, Perry TL, et al. Dominantly inherited olivopontocerebellar atrophy from eastern Cuba. Clinical, neuropathological, and biochemical findings. J Neurol Sci 1989;93:37-50.

    PubMed  CAS  Google Scholar 

  34. Rub U, Del Turco D, Del Tredici K, et al. Thalamic involvement in a spinocerebellar ataxia type 2 (SCA2) and a spinocerebellar ataxia type 3 (SCA3) patient, and its clinical relevance. Brain 2003;126:2257-2272.

    PubMed  CAS  Google Scholar 

  35. Rub U, Burk K, Schols L, et al. Damage to the reticulotegmental nucleus of the pons in spinocerebellar ataxia type 1, 2, and 3. Neurology 2004;63:1258-1263.

    PubMed  CAS  Google Scholar 

  36. Gierga K, Burk K, Bauer M, et al. Involvement of the cranial nerves and their nuclei in spinocerebellar ataxia type 2 (SCA2). Acta Neuropathol 2005;109:617-631.

    PubMed  CAS  Google Scholar 

  37. Rub U, Seidel K, Ozerden I, et al. Consistent affection of the central somatosensory system in spinocerebellar ataxia type 2 and type 3 and its significance for clinical symptoms and rehabilitative therapy. Brain Res Rev 2007;53:235-249.

    PubMed  Google Scholar 

  38. Hansen ST, Meera P, Otis TS, Pulst SM. Changes in Purkinje cell firing and gene expression precede behavioral pathology in a mouse model of SCA2. Hum Mol Genet 2013;22:271-283.

    PubMed  CAS  PubMed Central  Google Scholar 

  39. Paulson H. Machado-Joseph disease/spinocerebellar ataxia type 3. Handb Clin Neurol 2012;103:437-449.

    PubMed  PubMed Central  Google Scholar 

  40. Scherzed W, Brunt ER, Heinsen H, et al. Pathoanatomy of cerebellar degeneration in spinocerebellar ataxia type 2 (SCA2) and type 3 (SCA3). Cerebellum 2012;11:749-760.

    PubMed  CAS  Google Scholar 

  41. Rub U, de Vos RA, Brunt ER, et al. Spinocerebellar ataxia type 3 (SCA3): thalamic neurodegeneration occurs independently from thalamic ataxin-3 immunopositive neuronal intranuclear inclusions. Brain Pathol 2006;16:218-227.

    PubMed  Google Scholar 

  42. Seidel K, Siswanto S, Brunt ER, den Dunnen W, Korf HW, Rub U. Brain pathology of spinocerebellar ataxias. Acta Neuropathol 2012;124:1-21.

    PubMed  CAS  Google Scholar 

  43. Matsumura R, Futamura N, Fujimoto Y, et al. Spinocerebellar ataxia type 6. Molecular and clinical features of 35 Japanese patients including one homozygous for the CAG repeat expansion. Neurology 1997;49:1238-1243.

    PubMed  CAS  Google Scholar 

  44. Gierga K, Schelhaas HJ, Brunt ER, et al. Spinocerebellar ataxia type 6 (SCA6): neurodegeneration goes beyond the known brain predilection sites. Neuropathol Appl Neurobiol 2009;35:515-527.

    PubMed  CAS  Google Scholar 

  45. Restituito S, Thompson RM, Eliet J, et al. The polyglutamine expansion in spinocerebellar ataxia type 6 causes a beta subunit-specific enhanced activation of P/Q-type calcium channels in Xenopus oocytes. J Neurosci 2000;20:6394-6403.

    PubMed  CAS  Google Scholar 

  46. Toru S, Murakoshi T, Ishikawa K, et al. Spinocerebellar ataxia type 6 mutation alters P-type calcium channel function. J Biol Chem 2000;275:10893-10898.

    PubMed  CAS  Google Scholar 

  47. Matsuyama Z, Wakamori M, Mori Y, Kawakami H, Nakamura S, Imoto K. Direct alteration of the P/Q-type Ca2+ channel property by polyglutamine expansion in spinocerebellar ataxia 6. J Neurosci. 1999. 19: Rc14.

    PubMed  CAS  Google Scholar 

  48. Saegusa H, Wakamori M, Matsuda Y, et al. Properties of human Cav2.1 channel with a spinocerebellar ataxia type 6 mutation expressed in Purkinje cells. Mol Cell Neurosci 2007;34:261-270.

    PubMed  CAS  Google Scholar 

  49. Du X, Wang J, Zhu H, et al. Second cistron in CACNA1A gene encodes a transcription factor mediating cerebellar development and SCA6. Cell 2013;154:118-133.

    PubMed  CAS  PubMed Central  Google Scholar 

  50. Kordasiewicz HB, Thompson RM, Clark HB, Gomez CM. C-termini of P/Q-type Ca2+ channel alpha1A subunits translocate to nuclei and promote polyglutamine-mediated toxicity. Hum Mol Genet 2006;15:1587-1599.

    PubMed  CAS  Google Scholar 

  51. Pouladi MA, Morton AJ, Hayden MR. Choosing an animal model for the study of Huntington’s disease. Nat Rev Neurosci 2013;14:708-721.

    PubMed  CAS  Google Scholar 

  52. Vonsattel JP, DiFiglia M. Huntington disease. J Neuropathol Exp Neurol 1998;57:369-384.

    PubMed  CAS  Google Scholar 

  53. Gabery S, Murphy K, Schultz K, et al. Changes in key hypothalamic neuropeptide populations in Huntington disease revealed by neuropathological analyses. Acta Neuropathol 2010;120:777-788.

    PubMed  CAS  Google Scholar 

  54. Fennema-Notestine C, Archibald SL, Jacobson MW, et al. In vivo evidence of cerebellar atrophy and cerebral white matter loss in Huntington disease. Neurology 2004;63:989-995.

    PubMed  CAS  Google Scholar 

  55. Figiel M, Szlachcic WJ, Switonski PM, Gabka A, Krzyzosiak WJ. Mouse models of polyglutamine diseases: review and data table. Part I. Mol Neurobiol 2012;46:393-429.

    PubMed  CAS  PubMed Central  Google Scholar 

  56. Slow EJ, van Raamsdonk J, Rogers D, et al. Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease. Hum Mol Genet 2003;12:1555-1567.

    PubMed  CAS  Google Scholar 

  57. Heng MY, Duong DK, Albin RL, et al. Early autophagic response in a novel knock-in model of Huntington disease. Hum Mol Genet 2010;19:3702-3720.

    PubMed  CAS  PubMed Central  Google Scholar 

  58. Joshi PR, Wu NP, Andre VM, et al. Age-dependent alterations of corticostriatal activity in the YAC128 mouse model of Huntington disease. J Neurosci 2009;29:2414-2427.

    PubMed  CAS  PubMed Central  Google Scholar 

  59. Cepeda C, Hurst RS, Calvert CR, et al. Transient and progressive electrophysiological alterations in the corticostriatal pathway in a mouse model of Huntington’s disease. J Neurosci 2003;23:961-969.

    PubMed  CAS  Google Scholar 

  60. Cepeda C, Starling AJ, Wu N, et al. Increased GABAergic function in mouse models of Huntington’s disease: reversal by BDNF. J Neurosci Res 2004;78:855-867.

    PubMed  CAS  Google Scholar 

  61. Cepeda C, Galvan L, Holley SM, et al. Multiple sources of striatal inhibition are differentially affected in Huntington’s disease mouse models. J Neurosci 2013;33:7393-7406.

    PubMed  CAS  PubMed Central  Google Scholar 

  62. Miller BR, Walker AG, Shah AS, Barton SJ, Rebec GV. Dysregulated information processing by medium spiny neurons in striatum of freely behaving mouse models of Huntington’s disease. J Neurophysiol 2008;100:2205-2216.

    PubMed  PubMed Central  Google Scholar 

  63. Rebec GV, Conroy SK, Barton SJ. Hyperactive striatal neurons in symptomatic Huntington R6/2 mice: variations with behavioral state and repeated ascorbate treatment. Neuroscience 2006;137:327-336.

    PubMed  CAS  Google Scholar 

  64. Singaraja RR, Huang K, Sanders SS, et al. Altered palmitoylation and neuropathological deficits in mice lacking HIP14. Hum Mol Genet 2011;20:3899-3909.

    PubMed  CAS  PubMed Central  Google Scholar 

  65. Levine MS, Klapstein GJ, Koppel A, et al. Enhanced sensitivity to N-methyl-D-aspartate receptor activation in transgenic and knockin mouse models of Huntington’s disease. J Neurosci Res 1999;58:515-532.

    PubMed  CAS  Google Scholar 

  66. Klapstein GJ, Fisher RS, Zanjani H, et al. Electrophysiological and morphological changes in striatal spiny neurons in R6/2 Huntington’s disease transgenic mice. J Neurophysiol 2001;86:2667-2677.

    PubMed  CAS  Google Scholar 

  67. Ariano MA, Cepeda C, Calvert CR, et al. Striatal potassium channel dysfunction in Huntington’s disease transgenic mice. J Neurophysiol 2005;93:2565-2574.

    PubMed  CAS  Google Scholar 

  68. Cepeda C, Ariano MA, Calvert CR, et al. NMDA receptor function in mouse models of Huntington disease. J Neurosci Res 2001;66:525-539.

    PubMed  CAS  Google Scholar 

  69. Tong X, Ao Y, Faas GC, et al. Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington’s disease model mice. Nat Neurosci 2014;17:694-703.

    PubMed  CAS  Google Scholar 

  70. Cummings DM, Andre VM, Uzgil BO, et al. Alterations in cortical excitation and inhibition in genetic mouse models of Huntington’s disease. J Neurosci 2009;29:10371-10386.

    PubMed  CAS  PubMed Central  Google Scholar 

  71. Andre VM, Cepeda C, Venegas A, Gomez Y, Levine MS. Altered cortical glutamate receptor function in the R6/2 model of Huntington’s disease. J Neurophysiol 2006;95:2108-2119.

    PubMed  CAS  Google Scholar 

  72. Rub U, Hoche F, Brunt ER, et al. Degeneration of the cerebellum in Huntington’s disease (HD): possible relevance for the clinical picture and potential gateway to pathological mechanisms of the disease process. Brain Pathol 2013;23:165-177.

    PubMed  Google Scholar 

  73. Dougherty SE, Reeves JL, Lucas EK, Gamble KL, Lesort M, Cowell RM. Disruption of Purkinje cell function prior to huntingtin accumulation and cell loss in an animal model of Huntington disease. Exp Neurol 2012;236:171-178.

    PubMed  CAS  PubMed Central  Google Scholar 

  74. Dougherty SE, Reeves JL, Lesort M, Detloff PJ, Cowell RM. Purkinje cell dysfunction and loss in a knock-in mouse model of Huntington disease. Exp Neurol 2013;240:96-102.

    PubMed  CAS  PubMed Central  Google Scholar 

  75. Wang Y, Qin ZH. Molecular and cellular mechanisms of excitotoxic neuronal death. Apoptosis 2010;15:1382-1402.

    PubMed  CAS  Google Scholar 

  76. Zeron MM, Hansson O, Chen N, et al. Increased sensitivity to N-methyl-D-aspartate receptor-mediated excitotoxicity in a mouse model of Huntington’s disease. Neuron 2002;33:849-860.

    PubMed  CAS  Google Scholar 

  77. Graham RK, Pouladi MA, Joshi P, et al. Differential susceptibility to excitotoxic stress in YAC128 mouse models of Huntington disease between initiation and progression of disease. J Neurosci 2009;29:2193-2204.

    PubMed  CAS  PubMed Central  Google Scholar 

  78. Albin RL, Young AB, Penney JB, et al. Abnormalities of striatal projection neurons and N-methyl-D-aspartate receptors in presymptomatic Huntington’s disease. N Engl J Med 1990;322:1293-1298.

    PubMed  CAS  Google Scholar 

  79. Young AB, Greenamyre JT, Hollingsworth Z, et al. NMDA receptor losses in putamen from patients with Huntington’s disease. Science 1988;241:981-983.

    PubMed  CAS  Google Scholar 

  80. Stack EC, Dedeoglu A, Smith KM, et al. Neuroprotective effects of synaptic modulation in Huntington’s disease R6/2 mice. J Neurosci 2007;27:12908-12915.

    PubMed  CAS  Google Scholar 

  81. Gu X, Andre VM, Cepeda C, et al. Pathological cell-cell interactions are necessary for striatal pathogenesis in a conditional mouse model of Huntington’s disease. Mol Neurodegener 2007;2:8.

    PubMed  PubMed Central  Google Scholar 

  82. Alvina K, Khodakhah K. The therapeutic mode of action of 4-aminopyridine in cerebellar ataxia. J Neurosci 2010;30:7258-7268.

    PubMed  CAS  PubMed Central  Google Scholar 

  83. Kasumu AW, Hougaard C, Rode F, et al. Selective positive modulator of calcium-activated potassium channels exerts beneficial effects in a mouse model of spinocerebellar ataxia type 2. Chem Biol 2012;19:1340-1353.

    PubMed  CAS  PubMed Central  Google Scholar 

  84. Takahashi T, Kikuchi S, Katada S, Nagai Y, Nishizawa M, Onodera O. Soluble polyglutamine oligomers formed prior to inclusion body formation are cytotoxic. Hum Mol Genet 2008;17:345-356.

    PubMed  CAS  Google Scholar 

  85. Koch P, Breuer P, Peitz M, et al. Excitation-induced ataxin-3 aggregation in neurons from patients with Machado-Joseph disease. Nature 2011;480:543-546.

    PubMed  CAS  Google Scholar 

  86. Hodges A, Strand AD, Aragaki AK, et al. Regional and cellular gene expression changes in human Huntington’s disease brain. Hum Mol Genet 2006;15:965-977.

    PubMed  CAS  Google Scholar 

  87. Crespo-Barreto J, Fryer JD, Shaw CA, Orr HT, Zoghbi HY. Partial loss of ataxin-1 function contributes to transcriptional dysregulation in spinocerebellar ataxia type 1 pathogenesis. PLoS Genet 2010;6:e1001021.

    PubMed  PubMed Central  Google Scholar 

  88. Balkowiec A, Katz DM. Cellular mechanisms regulating activity-dependent release of native brain-derived neurotrophic factor from hippocampal neurons. J Neurosci 2002;22:10399-10407.

    PubMed  CAS  Google Scholar 

  89. Ghiglieri V, Sgobio C, Patassini S, et al. TrkB/BDNF-dependent striatal plasticity and behavior in a genetic model of epilepsy: modulation by valproic acid. Neuropsychopharmacology 2010;35:1531-1540.

    PubMed  CAS  PubMed Central  Google Scholar 

  90. Miki T, Hirai H, Takahashi T. Activity-dependent neurotrophin signaling underlies developmental switch of Ca2+ channel subtypes mediating neurotransmitter release. J Neurosci 2013;33:18755-18763.

    PubMed  CAS  Google Scholar 

  91. Zuccato C, Cattaneo E. Brain-derived neurotrophic factor in neurodegenerative diseases. Nat Rev Neurol 2009;5:311-322.

    PubMed  CAS  Google Scholar 

  92. Zuccato C, Ciammola A, Rigamonti D, et al. Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science 2001;293:493-498.

    PubMed  CAS  Google Scholar 

  93. Zuccato C, Tartari M, Crotti A, et al. Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nat Genet 2003;35:76-83.

    PubMed  CAS  Google Scholar 

  94. Zuccato C, Belyaev N, Conforti P, et al. Widespread disruption of repressor element-1 silencing transcription factor/neuron-restrictive silencer factor occupancy at its target genes in Huntington’s disease. J Neurosci 2007;27:6972-6983.

    PubMed  CAS  Google Scholar 

  95. Gambazzi L, Gokce O, Seredenina T, et al. Diminished activity-dependent brain-derived neurotrophic factor expression underlies cortical neuron microcircuit hypoconnectivity resulting from exposure to mutant huntingtin fragments. J Pharmacol Exp Ther 2010;335:13-22.

    PubMed  CAS  Google Scholar 

  96. Kaltenbach LS, Romero E, Becklin RR, et al. Huntingtin interacting proteins are genetic modifiers of neurodegeneration. PLoS Genet 2007;3:e82.

    PubMed  PubMed Central  Google Scholar 

  97. Swayne LA, Chen L, Hameed S, et al. Crosstalk between huntingtin and syntaxin 1A regulates N-type calcium channels. Mol Cell Neurosci 2005;30:339-351.

    PubMed  CAS  Google Scholar 

  98. Romero E, Cha GH, Verstreken P, et al. Suppression of neurodegeneration and increased neurotransmission caused by expanded full-length huntingtin accumulating in the cytoplasm. Neuron 2008;57:27-40.

    PubMed  CAS  PubMed Central  Google Scholar 

  99. Tang TS, Tu H, Chan EY, et al. Huntingtin and huntingtin-associated protein 1 influence neuronal calcium signaling mediated by inositol-(1,4,5) triphosphate receptor type 1. Neuron 2003;39:227-239.

    PubMed  CAS  PubMed Central  Google Scholar 

  100. Tang TS, Slow E, Lupu V, et al. Disturbed Ca2+ signaling and apoptosis of medium spiny neurons in Huntington’s disease. Proc Natl Acad Sci U S A 2005;102:2602-2607.

    PubMed  CAS  PubMed Central  Google Scholar 

  101. Tang TS, Guo C, Wang H, Chen X, Bezprozvanny I. Neuroprotective effects of inositol 1,4,5-trisphosphate receptor C-terminal fragment in a Huntington’s disease mouse model. The J Neurosci 2009;29:1257-1266.

    CAS  Google Scholar 

  102. Becker EB, Oliver PL, Glitsch MD, et al. A point mutation in TRPC3 causes abnormal Purkinje cell development and cerebellar ataxia in moonwalker mice. Proc Natl Acad Sci U S A 2009;106:6706-6711.

    PubMed  CAS  PubMed Central  Google Scholar 

  103. Zanjani HS, McFarland R, Cavelier P, et al. Death and survival of heterozygous Lurcher Purkinje cells in vitro. Develop Neurobiol 2009;69:505-517.

    Google Scholar 

  104. Vig PJ, Subramony SH, Burright EN, et al. Reduced immunoreactivity to calcium-binding proteins in Purkinje cells precedes onset of ataxia in spinocerebellar ataxia-1 transgenic mice. Neurology 1998;50:106-113.

    PubMed  CAS  Google Scholar 

  105. Vig PJ, Wei J, Shao Q, Lopez ME, Halperin R, Gerber J. Suppression of calbindin-D28k expression exacerbates SCA1 phenotype in a disease mouse model. Cerebellum 2012;11:718-732.

    PubMed  CAS  Google Scholar 

  106. Chen X, Tang TS, Tu H, et al. Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 3. J Neurosci 2008;28:12713-12724.

    PubMed  CAS  PubMed Central  Google Scholar 

  107. Liu J, Tang TS, Tu H, et al. Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 2. J Neurosci 2009;29:9148-9162.

    PubMed  CAS  PubMed Central  Google Scholar 

  108. Kasumu AW, Liang X, Egorova P, Vorontsova D, Bezprozvanny I. Chronic suppression of inositol 1,4,5-triphosphate receptor-mediated calcium signaling in cerebellar purkinje cells alleviates pathological phenotype in spinocerebellar ataxia 2 mice. J Neurosci 2012;32:12786-12796.

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health grants K08NS072158 and R01NS085054 (VGS) and through the University of Michigan Medical Scientist Training Program–National Institutes of Health grant T32GM007863 (RC).

Required Author Forms

Disclosure forms provided by the authors are available with the online version of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikram G. Shakkottai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1224 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chopra, R., Shakkottai, V.G. The Role for Alterations in Neuronal Activity in the Pathogenesis of Polyglutamine Repeat Disorders. Neurotherapeutics 11, 751–763 (2014). https://doi.org/10.1007/s13311-014-0289-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13311-014-0289-7

Key Words

Navigation